Answer:
25.08m/s
Explanation:
mgh1 + 0.5mv1² = mgh2 + 0.5mv2²
h1 = 0m
v1 = u
h2 = 5m
v2 = 23m/s
putting the values into the formula above;
m(10)(0) + 0.5m(u²) = m(10)(5) + 0.5m(23²)
0 + 0.5mu² = 50m + 264.5m
0.5mu² = 314.5m
dividing through by m
0.5u² = 314.5
u² = 629
u = <u>2</u><u>5</u><u>.</u><u>0</u><u>8</u><u>m</u><u>/</u><u>s</u>
<u>Theref</u><u>ore</u><u>,</u><u> </u><u>the</u><u> </u><u>init</u><u>ial</u><u> </u><u>speed</u><u> </u><u>"</u><u>u</u><u>"</u><u> </u><u>=</u><u> </u><u>2</u><u>5</u><u>m</u><u>/</u><u>s</u>
Answer:
d. 332 V
Explanation:
Given;
number of turns in the wire, N = 40 turns
area of the coil, A = 0.06 m²
magnitude of the magnetic field, B = 0.4 T
frequency of the wave, f = 55 Hz
The maximum emf induced in the coil is given by;
E = NBAω
Where;
ω is angular velocity = 2πf
E = NBA(2πf)
E = 40 x 0.4 x 0.06 x (2 x π x 55)
E = 332 V
Therefore, the maximum induced emf in the coil is 332 V.
The correct option is "D"
d. 332 V
Answer:
Explanation:
a )
change in the gravitational potential energy of the bear-Earth system during the slide = mgh
= 45 x 9.8 x 11
= 4851 J
b )
kinetic energy of bear just before hitting the ground
= 1/2 m v²
= .5 x 45 x 5.8²
= 756.9 J
c ) If the average frictional force that acts on the sliding bear be F
negative work done by friction
= F x 11 J
then ,
4851 J - F x 11 = 756.9 J
F x 11 = 4851 J - 756.9 J
= 4094.1 J
F = 4094.1 / 11
= 372.2 N
Answer:
6.57 m/s
Explanation:
First use Hook's Law to determine the F the compressed spring acts on the mass. Hook's Law F=kx; F=force, k=stiffnes of spring (or spring constant), x=displacement
F=kx; F=180(.3) = 54 N
Next from Newton's second law find the acceleration of the mass.
Newton's .2nd law F=ma; a=F/m ; a=54/.75 = 72m/s²
Now use the kinematic equation for velocity (or speed)
v₂²= v₀² + 2a(x₂-x₀); v₂=final velocity; v₀=initial velocity; a=acceleration; x₂=final displacement; x₀=initial displacment.
v₀=0, since the mass is at rest before we release it
a=72 m/s² (from above)
x₀=0 as the start position already compressed
x₂=0.3m (this puts the spring back to it's natural length)
v₂²= 0 + 2(72)(0.3) = 43.2 m²/s²
v₂=
= 6.57 m/s
Answer:
the correct answer is D
Explanation:
In this exercise, the vectors are in the same west-east direction, so we can assume that the positive direction is east and perform the algebraic sum.
R = δ + ε
where
δ = 2.0 m
ε = 7.0 m
the positive sign indicates that it is heading east
R = 2.0 + 7.0
R = 9.0 m
the direction is east
the correct answer is D