Molarity= mol/ liters
since the molarity is given, we can assume that we have 1.0 Liters of solution
15.6 M= mol/ 1 liters---> this means that we have 15.6 moles of HNO3
we need to convert these moles to grams using the molar mass of HNO3
molar mass HNO3= 1.01 + 14.0 + (3 X 16.0)= 63.01 g/mol
15.6 mol HNO3 (63.01 g/ mol)= 983 grams HNO3
now we have to determine the grams of solution using the assumption of 1 liters of solution and the density
1 liters= 1000 mL
1000 mL (1.41 g/ ml)= 1410 grams solution
mass percent= mass of solute/ mass of solution x 100
mass percent= 63.01/ 1410 x 100= 4.47 %
Answer-kinetic energy. The human experience of sound is caused by vibrations. The object creating the sound creates waves of movement through a medium, like air, until it reaches our eardrums, which then vibrate and our brain interprets that as sound. Here are some examples of sound energy:
Answer:
The molar heat capacity at constant volume is 21.62 JK⁻¹mol⁻¹
The molar heat capacity at constant pressure is 29.93 JK⁻¹mol⁻¹
Explanation:
We can calculate the molar heat capacity at constant pressure from

Where
is the molar heat capacity at constant pressure
is the heat capacity at constant pressure
and
is the number of moles
Also
is given by

Hence,
becomes

From the question,
= 229.0 J
= 3.00 mol
= 2.55 K
Hence,
becomes

29.93 JK⁻¹mol⁻¹
This is the molar heat capacity at constant pressure
For, the molar heat capacity at constant volume,
From the formula

Where
is the molar heat capacity at constant volume
and
is the gas constant (
= 8.314 JK⁻¹mol⁻¹)
Then,


21.62 JK⁻¹mol⁻¹
This is the molar heat capacity at constant volume
Iron Fluoride
A chemical compound is a substance composed of atoms from two or more (different) elements. These compounds are formed by the creation of chemical bonds between the atoms of the different elements.
Helium and Neon are both elements, and in particular, they belong to a group of chemical elements called noble gases. Being noble gases, they are very stable and do not react easily.
Iron fluoride is a chemical compound consisting of the metal, iron, and the nonmetal, fluorine. When a metal and a nonmetal react to form a compound, they form ionic bonds to hold together the atoms of the different elements comprising the compound.