1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Degger [83]
3 years ago
5

Help I need this lol!!!!!

Chemistry
1 answer:
brilliants [131]3 years ago
4 0

Answer:

green

Explanation:

You might be interested in
Purest form of carbon is
vladimir2022 [97]

Answer:

Obtención. El carbono se encuentra - frecuentemente muy puro - en la naturaleza, en estado elemental, en las formas alotrópicas diamante y grafito. El material natural más rico en carbono es el carbón (del cual existen algunas variedades). Grafito: Se encuentra en algunos yacimientos naturales muy puro.

4 0
3 years ago
Read 2 more answers
4HCI + O2 =2H20 + Cl2
Sergio039 [100]

The rate of the backward reaction increases

Explanation:

It is evident that if the reaction is left to proceed spontaneously, the forward reaction is favored because it results in a decrease in pressure in the system (The total reactants have 5 moles and the products have 3 in total).

Increasing H₂O concentration is then reaction, therefore, stymies the forward reaction and favors the reserves reaction. This is because the reverse reaction will lead to reduced pressure.

6 0
3 years ago
A 125g metal block at a temperature of 93.2 degrees Celsius was immersed in 100g of water at 18.3 degrees Celsius. Given the spe
nikitadnepr [17]

Answer:

\large \boxed{34.2\, ^{\circ}\text{C}}

Explanation:

There are two heat transfers involved: the heat lost by the metal block and the heat gained by the water.

According to the Law of Conservation of Energy, energy can neither be destroyed nor created, so the sum of these terms must be zero.

Let the metal be Component 1 and the water be Component 2.

Data:  

For the metal:

m_{1} =\text{125 g; }T_{i} = 93.2 ^{\circ}\text{C; }\\C_{1} = 0.900 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$}

For the water:

m_{2} =\text{100 g; }T_{i} = 18.3 ^{\circ}\text{C; }\\C_{2} = 4.184 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$}

\begin{array}{rcl}\text{Heat lost by metal + heat gained by water} & = & 0\\q_{1} + q_{2} & = & 0\\m_{1}C_{1}\Delta T_{1} + m_{2}C_{2}\Delta T_{2} & = & 0\\\text{125 g}\times 0.900 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$} \times\Delta T_{1} + \text{100 g} \times 4.184 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$}\Delta \times T_{2} & = & 0\\112.5\Delta T_{1} + 418.4\Delta T_{2} & = & 0\\112.5\Delta T_{1} & = & -418.4\Delta T_{2}\\\Delta T_{1} & = & -3.719\Delta T_{2}\\\end{array}

\Delta T_{1} = T_{\text{f}} - 93.2 ^{\circ}\text{C}\\\Delta T_{2} = T_{\text{f}} - 18.3 ^{\circ}\text{C}

\begin{array}{rcl}\Delta T_{1} & = & -3.719\Delta T_{2}\\T_{\text{f}} - 93.2 ^{\circ}\text{C} & = & -3.719 (T_{\text{f}} - 18.3 ^{\circ}\text{C})\\T_{\text{f}} - 93.2 ^{\circ}\text{C} & = & -3.719T_{\text{f}} + 68.06 ^{\circ}\text{C}\\4.719T_{\text{f}} & = & 161.3 ^{\circ}\text{C}\\T_{\text{f}} & = & \mathbf{34.2 ^{\circ}}\textbf{C}\\\end{array}\\\text{The final temperature of the block and the water is $\large \boxed{\mathbf{34.2\, ^{\circ}}\textbf{C}}$}

3 0
3 years ago
Can anyone help me please?
Nady [450]

10. Is A

11. Is D

12. Is D

13. Is B

5 0
2 years ago
For the following reaction, 4.31 grams of iron are mixed with excess oxygen gas . The reaction yields 5.17 grams of iron(II) oxi
natka813 [3]

<u>Answer:</u> The theoretical yield of iron (II) oxide is 5.53g and percent yield of the reaction is 93.49 %

<u>Explanation:</u>

To calculate the number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}       ....(1)

  • <u>For Iron:</u>

Given mass of iron = 4.31 g

Molar mass of iron = 53.85 g/mol

Putting values in above equation, we get:  

\text{Moles of iron}=\frac{4.31g}{53.85g/mol}=0.0771mol

For the given chemical reaction:

2Fe(s)+O_2(g)\rightarrow 2FeO(s)

By Stoichiometry of the reaction:

2 moles of iron produces 2 moles of iron (ii) oxide.

So, 0.0771 moles of iron will produce = \frac{2}{2}\times 0.0771=0.0771mol of iron (ii) oxide

Now, calculating the theoretical yield of iron (ii) oxide using equation 1, we get:

Moles of of iron (II) oxide = 0.0771 moles

Molar mass of iron (II) oxide = 71.844 g/mol

Putting values in equation 1, we get:  

0.0771mol=\frac{\text{Theoretical yield of iron(ii) oxide}}{71.844g/mol}=5.53g

To calculate the percentage yield of iron (ii) oxide, we use the equation:

\%\text{ yield}=\frac{\text{Experimental yield}}{\text{Theoretical yield}}\times 100

Experimental yield of iron (ii) oxide = 5.17 g

Theoretical yield of iron (ii) oxide = 5.53 g

Putting values in above equation, we get:

\%\text{ yield of iron (ii) oxide}=\frac{5.17g}{5.53g}\times 100\\\\\% \text{yield of iron (ii) oxide}=93.49\%

Hence, the theoretical yield of iron (II) oxide is 5.53g and percent yield of the reaction is 93.49 %

7 0
2 years ago
Other questions:
  • Which segement of the heating curve shown above represents an increase in the potential energy, but no change in the kinetic ene
    11·2 answers
  • PLEASE HELP BEFORE 7 A.M. PACIFIC TIME <br> SEE ATTACHED.
    10·2 answers
  • Which of the following statements are true about whether atoms tend to gain<br> or lose electrons?
    14·1 answer
  • What is the law of conservation of energy? a. Energy is created and destroyed. b. Energy is not created but is destroyed. c. Ene
    13·1 answer
  • What is the mole fraction of NaBr in
    6·1 answer
  • What quantity is the same among atoms of the same element?
    5·1 answer
  • The lakes, streams, and rivers that drain into the Chesapeake Bay together form a very large _____.
    10·1 answer
  • PLEASEEE HELP ?!?!?!
    6·2 answers
  • Balance the following reaction, which occurs in acidic solution.
    8·2 answers
  • Which hypothesis of thomson's atomic model was later found to be not true by niels bohr and why?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!