The required mole ratio of NH₃ to N₂ in the given chemical reaction is 2:4.
<h3>What is the stoichiometry?</h3>
Stoichiometry of the reaction gives idea about the number of entities present on the reaction before and after the reaction.
Given chemical reaction is:
4NH₃ + 3O₂ → 2N₂ + 6H₂O
From the stoichiometry of the reaction it is clear that:
4 moles of NH₃ = produces 2 moles of N₂
Mole ratio NH₃ to N₂ is 2:4.
Hence required mole ratio is 2:4.
To know more about mole ratio, visit the below link:
brainly.com/question/504601
Answer:
The solution becomes diluted.
Explanation:
When you add water to a solution, the number of moles of the solvent stays the same while the volume increases. Therefore, the molarity decreases.
Hope this helps!
Take a zip lock bag and draw clouds on the outside with a sharpie then fill the bag with water and then tape it on a window that has a lot of sun and wait awhile and there should be a change in the water and that shooed what happens to water when it’s warm/sunny out
To find - Identify what kind of ligand (weak or strong), what kind
of wavelength (long or short), what kind of spin (high spin or
low spin) and whether it is paramagnetic or diamagnetic for
the following complexes.
1. [Mn(CN)6]4-
2. [Fe(OH)(H2O)5]2
3. [CrCl4Br2]3-
Step - by - Step Explanation -
1.
[Mn(CN)⁶]⁴⁻ :
Ligand - Strong
Wavelength - Short
Spin - Low spin
Number of unpaired electrons = 1 ∴ paramagnetic.
2.
[Fe(OH)(H₂O)₅]²⁺ :
Ligand - Weak ( both OH⁻ and H₂O )
Wavelength - Long
Spin - High spin
Number of unpaired electrons = 5 ∴ paramagnetic.
3.
[CrCl₄Br₂]³⁻ :
Ligand - Weak ( both Br⁻ and Cl⁻ )
Wavelength - Long
Spin - High spin
Number of unpaired electrons = 3 ∴ paramagnetic.