Answer:

Explanation:
Given a material with temperature coefficient of resistance <em>c</em>, the equation that relates the resistance
at temperature
and the resistance
at temperature
is

We want to double our resistance, so
, thus having:

For this T must be:


which for our values means (with
, remember to write temperature in S.I., and that for silver
):

Answer:
a) They are in the same point
b) t = 0 s, t = 2.27 s, t = 5.73 s
c) t = 1 s, t = 4.33 s
d) t = 2.67 s
Explanation:
Given equations are:


Constants are:

a) "Just after leaving the starting point" means that t = 0. So, if we look the equations, both
and
depend on t and don't have constant terms.
So both cars A and B are in the same point.
b) Firstly, they are in the same point in x = 0 at t = 0. But for generalized case, we must equalize equations and solve quadratic equation where roots will give us proper t value(s).


s,
s
c) Since the distance isn't changing, the velocities are equal. To find velocities, we need to take the derivatives of both equations with respect to time and equalize them.

s,
s
d) For same acceleration, we we need to take the derivatives of velocity equations with respect to time and equalize them.
s
<span>The lowest point in Death Valley is 85 m below sea level. The summit of nearby Mt. Whitney has an elevation of 4420 m. </span>
In order to determine the acceleration of the block, use the following formula:

Moreover, remind that for an object attached to a spring the magnitude of the force acting over a mass is given by:

Then, you have:

by solving for a, you obtain:

In this case, you have:
k: spring constant = 100N/m
m: mass of the block = 200g = 0.2kg
x: distance related to the equilibrium position = 14cm - 12cm = 2cm = 0.02m
Replace the previous values of the parameters into the expression for a:

Hence, the acceleration of the block is 10 m/s^2
Normal force is the force exerted when an object is on an surface. So an example could be a pile of books on top of a table.