Eight ones = 8
Six tens= 60
60 + 8 = 68
Answer:
The number of students that bring their lunches is 12
Step-by-step explanation:
Let
x -----> the number of students that bring their lunches
y -----> the total number of students in a class
we know that
The number of students that bring their lunches divided by the total number of students in a class must be equal to 3/8
-----> equation A
-----> equation B
substitute the value of y in equation A and solve for x
therefore
The number of students that bring their lunches is 12
Answer:
<h3>
(2, 124)</h3>
Step-by-step explanation:
f(x) = a(x - h)² + k - the vertex form of the equation of the parabola with vertex (h, k)
![f(x) = -16x^2+ 64x + 80\\\\f(x) = -16(x^2- 4x) + 80\\\\f(x) = -16(\underline {x^2-2\cdot2x\cdot2+2^2}-2^2) + 80\\\\f(x) = -16\big[(x-2)^2-4\big] + 80\\\\f(x) = -16(x-2)^2+64 + 80\\\\\bold{f(x)=-16(x-2)^2+124\quad\implies\quad h=2\,,\quad k=124}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20-16x%5E2%2B%2064x%20%2B%2080%5C%5C%5C%5Cf%28x%29%20%3D%20-16%28x%5E2-%204x%29%20%2B%2080%5C%5C%5C%5Cf%28x%29%20%3D%20-16%28%5Cunderline%20%7Bx%5E2-2%5Ccdot2x%5Ccdot2%2B2%5E2%7D-2%5E2%29%20%2B%2080%5C%5C%5C%5Cf%28x%29%20%3D%20-16%5Cbig%5B%28x-2%29%5E2-4%5Cbig%5D%20%2B%2080%5C%5C%5C%5Cf%28x%29%20%3D%20-16%28x-2%29%5E2%2B64%20%2B%2080%5C%5C%5C%5C%5Cbold%7Bf%28x%29%3D-16%28x-2%29%5E2%2B124%5Cquad%5Cimplies%5Cquad%20h%3D2%5C%2C%2C%5Cquad%20k%3D124%7D)
<u>The vertex is </u><u>(2, 124)</u>
Given the following functions below,

Factorising the denominators of both functions,
Factorising the denominator of f(x),

Factorising the denominator of g(x),

Multiplying both functions,
Answer: option c
Step-by-step explanation:
Find the x-intercept and y-intercept of each line.
To find the x-intercept, substitute
into the equation and solve for "x".
To find the y-intercept, substitute
into the equation and solve for "y".
- For the first equation:
x-intercept

y-intercept

Graph a line that passes through the points (7.25, 0) and (0, 9.66)
- For the second equation:
x-intercept

y-intercept

Graph a line that passes through the points (0.5, 0) and (0, -0.33)
Observe the graph attached. You can see that point of intersection of the lines is (5,3); then this is the solution of the system. Therefore:
