This is a conservation of momentum problem! Here's how to do it:
Answer:
<em>155.80rad/s</em>
Explanation:
Using the equation of motion to find the angular acceleration:

is the final angular velocity in rad/s
is the initial angular velocity in rad/s
is the angular acceleration
t is the time taken
Given the following

Time = 4.1secs
Convert the angular velocity to rad/s
1rpm = 0.10472rad/s
6100rpm = x
x = 6100 * 0.10472
x = 638.792rad/s
Get the angular acceleration:
Recall that:

638.792 = 0 + ∝(4.1)
4.1∝ = 638.792
∝ = 638.792/4.1
∝ = 155.80rad/s
<em>Hence the angular acceleration as the blades slow down is 155.80rad/s</em>
Answer:
alpha=53.56rad/s
a=5784rad/s^2
Explanation:
First of all, we have to compute the time in which point D has a velocity of v=23ft/s (v0=0ft/s)

Now, we can calculate the angular acceleration (w0=0rad/s)


with this value we can compute the angular velocity

and the tangential velocity of point B, and then the acceleration of point B:

hope this helps!!
Yes.....The continetal plates shifting would cause either disaster...
Answer:
(a) 3.44 x 10^-3 m^3/s
(b) 8.4 m/s
Explanation:
area of water line, A = 5.29 x 10^-3 m
number of holes, N = 15
Speed of water in line, V = 0.651 m/s
(a) Volume flow rate is given by
V = area of water line x speed of water in water line
V = 5.29 x 10^-3 x 0.651 = 3.44 x 10^-3 m^3/s
(b) area of one hole, a = 4.13 x 10^-4 m
Let v be the velocity of water in each hole
According to the equation of continuity
A x V = a x v
5.29 x 10^-3 x 0.651 = 4.1 x 10^-4 x v
v = 8.4 m/s