Answer:
If gravity on Earth is increased, this gravitational tugging would have influenced the moon's rotation rate. If it was spinning more than once per orbit, Earth would pull at a slight angle against the moon's direction of rotation, slowing its spin. If the moon was spinning less than once per orbit, Earth would have pulled the other way, speeding its rotation.
The horizontal and vertical components of a projectile's velocity are independent of each other.
Answer: Option C
<u>Explanation:</u>
The path of a projectile is determined by two components of motion. They are termed as horizontal and the vertical components. Since both components velocity are perpendicular to each other, so it can stated that they are independent of each other.
Even it can seen that when the horizontal components of velocity is constant, then there will be change in the vertical components of velocity leading to free fall projectile path.
And in the absence of gravity, there will be change in the horizontal components of velocity with zero vertical component of velocity. Thus, the horizontal and the vertical components of a projectile’s velocity are seemed to be independent of each other.
A. Angular momentum is always conserved would be the correct answer.
This is because like linear momentum (mvmv), angular momentum (r×mvr×mv) is a conserved quantity, where rr is the vector from the center of rotation. For a skater holding a static pose, for each particle making up her body, the contribution in magnitude to the total angular momentum is given by mirivimirivi. Thus bringing in her arms reduces riri for those particles. In order to conserve angular momentum, there is then an increase in the angular velocity.
hope this helps!
Answer:
160N
Explanation: When 80kg mass is one group . It's reaction force acting on a ground.
Weight of the object = 80*10
= 800 N
Here we are given cofficient of static friction its 0.2. It should be smaller than 1
Friction force = Reaction * Friction Cofficient
Reaction = 800N ( Considering Vertical Equilibrium )
F = 800* 0.2
F = 160N