Answer:
Refractive index of unknown liquid = 1.56
Explanation:
Using Snell's law as:
Where,
is the angle of incidence ( 65.0° )
is the angle of refraction ( 53.0° )
is the refractive index of the refraction medium (unknown liquid, n=?)
is the refractive index of the incidence medium (oil, n=1.38)
Hence,
Solving for
,
Refractive index of unknown liquid = 1.56
Answer:
mass of the neutron star =3.45185×10^26 Kg
Explanation:
When the neutron star rotates rapidly, a material on its surface to remain in place, the magnitude of the gravitational acceleration on the central material must be equal to magnitude of the centripetal acc. of the rotating star.
That is

M_ns = mass odf the netron star.
G= gravitational constant = 6.67×10^{-11}
R= radius of the star = 18×10^3 m
ω = 10 rev/sec = 20π rads/sec
therefore,

= 3.45185... E26 Kg
= 3.45185×10^26 Kg
Answer:
Vehicles typically employ both hydraulic shock absorbers and springs or torsion bars. In this combination, "shock absorber" refers specifically to the hydraulic piston that absorbs and dissipates vibration.
Explanation:
hope this helps
Answer:
17.71N/m
Explanation:
The period of the spring is expressed according to the expression;

m is the mass of the object
k is the force constant
Given
m = 5.50kg
T = 3.50s
Substitute into the formula;

Hence the force constant of the spring is 17.71N/m
Answer:
The deceleration is 0.18 m/s²
Explanation:
Hi there!
Using Newton´s second law, we can calculate the deceleration:
∑F = m · a
Where:
∑F = the sum of all forces in a given direction.
m = mass of the object.
a = acceleration.
Solving for a:
∑F/m = a
The only force acting on the meteor is the applied force of 8.6 N. So, the acceleration will be:
8.6 N / 48.9 kg = a
a = 0.18 m/s²
The deceleration is 0.18 m/s² or, in other words, the acceleration is -0.18 m/s²
Have a nice day!