Apparent magnitude means how bright a star APPEARS to us on Earth. It can be affected by ...
... how bright the star really is
... how far the star is from us
... how much gas and dust is between us
... how much of the star's total output is in visible light
It is 800 N FN = 600N + 200 N = 800 N Answer to your question: The net force is all Newton's second law. It is the force that acts on a body or a particle. for example: It is the force we make when we push a car or something heavy that is in a straight line. .
The highest elevation reached by the ball in its trajectory is 16.4 m.
To find the answer, we need to know about the maximum height reached in a projectile.
What's the mathematical expression of the maximum height reached in a projectile motion?
- The maximum height= U²× sin²(θ)/g
- U= initial velocity, θ= angle of projectile with horizontal and g= acceleration due to gravity
What's the maximum height reached by a block that is thrown with an initial velocity of 30.0 m/s at an angle of 25° above the horizontal?
- Here, U = 30.0 m/s and θ= 25°
- Maximum height= 30²× sin²(25)/9.8
= 16.4m
Thus, we can conclude that the highest elevation reached by the ball in its trajectory is 16.4 m.
Learn more about the projectile motion here:
brainly.com/question/24216590
#SPJ4
Answer:

Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives

For the y-direction gives

Combining both equation yields the y_component of the final velocity

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.

The force exerted by the laser beam on a completely absorbing target is
.
The given parameters;
- <em>power of the laser light, P = 1050 W</em>
- <em>wavelength of the emitted light, λ = 10 μm </em>
The speed of the emitted laser light is given as;
v = 3 x 10⁸ m/s
The force exerted by the laser beam on a completely absorbing target is calculated as follows;
P = Fv

Thus, the force exerted by the laser beam on a completely absorbing target is
.
Learn more here:brainly.com/question/17328266