The people are using a lot of electricity blow drying to many peoples hair so i would make a schedule so it dosent get to busy with costumers
a) For the motion of car with uniform velocity we have ,
, where s is the displacement, u is the initial velocity, t is the time taken a is the acceleration.
In this case s = 520 m, t = 223 seconds, a =0 
Substituting

The constant velocity of car a = 2.33 m/s
b) We have 
s = 520 m, t = 223 seconds, u =0 m/s
Substituting

Now we have v = u+at, where v is the final velocity
Substituting
v = 0+0.0209*223 = 4.66 m/s
So final velocity of car b = 4.66 m/s
c) Acceleration = 0.0209 
Answer:
153.6 kN
Explanation:
The elastic constant k of the block is
k = E * A/l
k = 95*10^9 * 0.048*0.04/0.25 = 729.6 MN/m
0.12% of the original length is:
0.0012 * 0.25 m = 0.0003 m
Hooke's law:
F = x * k
Where x is the change in length
F = 0.0003 * 729.6*10^6 = 218.88 kN (maximum force admissible by deformation)
The compressive load will generate a stress of
σ = F / A
F = σ * A
F = 80*10^6 * 0.048 * 0.04 = 153.6 kN
The smallest admisible load is 153.6 kN