Yes. Even greater. Air resistance or drag becomes harder the faster an object goes. This is why when cars reach their max speed they don't accelerate as fast, because they are pushing harder against the wind. If I take a tennis ball and shoot it down a bottomless pit, a 400 kph, the drag will slow the ball down till it reaches terminal velocity.
Answer:
52.5°C
Explanation:
The final enthalpy is determined from energy balance where initial enthalpy and specific volume are obtained from A-12 for the given pressure and state
mh1 + W = mh2
h2 = h1 + W/m
h1 + Wα1/V1
242.9 kJ/kg + 2.35.0.11049kJ/ 0.35/60kg
=287.4 kJ/kg
From the final enthalpy and pressure the final temperature is obtained A-13 using interpolation
i.e T2 = T1 + T2 -T1/h2 -h1(h2 - h1)
= 50°C + 60 - 50/295.15 - 284.79
(287.4 - 284.79)°C
= 52.5°C
Answer:
<h2>The angular velocity just after collision is given as</h2><h2>

</h2><h2>At the time of collision the hinge point will exert net external force on it so linear momentum is not conserved</h2>
Explanation:
As per given figure we know that there is no external torque about hinge point on the system of given mass
So here we will have

now we can say

so we will have


Linear momentum of the system is not conserved because at the time of collision the hinge point will exert net external force on the system of mass
So we can use angular momentum conservation about the hinge point
Answer:
(D) energy from one place to another