Answer:
0.08kg/s
Explanation:
For this problem you must use 2 equations, the first is the continuity equation that indicates that all the mass flows that enter is equal to those that leave the system, there you have the first equation.
The second equation is obtained using the first law of thermodynamics that indicates that all the energies that enter a system are the same that come out, you must take into account the heat flows, work and mass flows of each state, as well as their enthalpies found with the temperature.
finally you use the two previous equations to make a system and find the mass flows
I attached procedure
Answer:
camshaft, in internal-combustion engines, rotating shaft with attached disks of irregular shape (the cams), which actuate the intake and exhaust valves of the cylinders.
Explanation:
I'm taking an engineering/tech class. I hope this helps! :)
Answer:
(a) the cutting time to complete the facing operation = 11.667mins
b) the cutting speeds and metal removal rates at the beginning= 12.89in³/min and end of the cut. = 8.143in³/min
Explanation:
check attached files below for answer.
Answer:
Exact answer: a form of energy resulting from the existence of charged particles (such as electrons or protons), either statically as an accumulation of charge or dynamically as a current.
C, because a narrow structure evacuation below surface ground isn’t the best and a structure holding forces and isn’t to do with the question at all and d doesn’t matter if there include away or not