Answer:
What that means please explain
Answer:
%Reduction in area = 73.41%
%Reduction in elongation = 42.20%
Explanation:
Given
Original diameter = 12.8 mm
Gauge length = 50.80mm
Diameter at the point of fracture = 6.60 mm (0.260 in.)
Fractured gauge length = 72.14 mm.
%Reduction in Area is given as:
((do/2)² - (d1/2)²)/(do/2)²
Calculating percent reduction in area
do = 12.8mm, d1 = 6.6mm
So,
%RA = ((12.8/2)² - 6.6/2)²)/(12.8/2)²
%RA = 0.734130859375
%RA = 73.41%
Calculating percent reduction in elongation
%Reduction in elongation is given as:
((do) - (d1))/(d1)
do = 72.14mm, d1 = 50.80mm
So,
%RA = ((72.24) - (50.80))/(50.80)
%RA = 0.422047244094488
%RA = 42.20%
Answer:
The average thickness of the blubber is<u> 0.077 m</u>
Explanation:
Here, we want to calculate the average thickness of the Walrus blubber.
We employ a mathematical formula to calculate this;
The rate of heat transfer(H) through the Walrus blubber = dQ/dT = KA(T2-T1)/L
Where dQ is the change in amount of heat transferred
dT is the temperature gradient(change in temperature) i.e T2-T1
dQ/dT = 220 W
K is the conductivity of fatty tissue without blood = 0.20 (J/s · m · °C)
A is the surface area which is 2.23 m^2
T2 = 37.0 °C
T1 = -1.0 °C
L is ?
We can rewrite the equation in terms of L as follows;
L × dQ/dT = KA(T2-T1)
L = KA(T2-T1) ÷ dQ/dT
Imputing the values listed above;
L = (0.2 * 2.23)(37-(-1))/220
L = (0.2 * 2.23 * 38)/220 = 16.948/220 = 0.077 m
Answer:
t = 30.1 sec
Explanation:
If the ant is moving at a constant speed, the velocity vector will have the same magnitude at any point, and can be decomposed in two vectors, along directions perpendicular each other.
If we choose these directions coincident with the long edge of the paper, and the other perpendicular to it, the components of the velocity vector, along these axes, can be calculated as the projections of this vector along these axes.
We are only interested in the component of the velocity across the paper, that can be calculated as follows:
vₓ = v* sin θ, where v is the magnitude of the velocity, and θ the angle that forms v with the long edge.
We know that v= 1.3 cm/s, and θ = 61º, so we can find vₓ as follows:
vₓ = 1.3 cm/s * sin 61º = 1.3 cm/s * 0.875 = 1.14 cm/s
Applying the definition of average velocity, we can solve for t:
t =
= 
⇒ t = 30.1 sec
The reactor, generator, and the cooling towers