The best transition between the four options presented to represent a time when water molecules are moving closer together would be A. Frost forms on a window pane.
The closest distance that the water molecules can do is when the water is in the state of being solid. It is known that the solid state of matter has the closest distance from molecule to molecule that when a molecule tries to move, the others move as well creating a vibration and thus producing heat in the process. When they are in a liquid state, they are quite far from each other. In a gas state, they really are far from each. This explains the difference in their characteristics.
Given:
Velocity: 0.5 mile/minute
Time: 12 minute
Now we know that speed and velocity have the same magnitude. Hence speed=velocity=0.5 mile/min
Substituting the given values in the above formula we get
Distance = 0.5 x 12= 6 miles
v1 = 6m/s
v2 = 0
∆v = v1 - v2 = 6m\s
s = t * v = 15m
t = s\v1 = 15(m) \ 6(m\s) = 2.5s
a = ∆v\t = 6(m\s) \ 2.5s = 2.4m\s2
a = F\m = 2.4m\s2
F = a * m = 2.4m\s2 * ?kg
I can't tell you this because I don't know the mass of this cyclist
- In order to achieve the desired resistance under the given circumstances, we would connect two 50 Ohms resistors in parallel and then connect it in series with the 20 Ohms resistors.
- In order to get a 35 Ohms resistance under the given circumstances, we would connect two 50 Ohms resistors in parallel and then connect it in series with two 20 Ohms resistors that are connected in parallel.
<h3>How to achieve the desired resistance under these circumstances?</h3>
In order to achieve the desired resistance under the given circumstances, we would connect two 50 Ohms resistors in parallel and then connect it in series with the 20 Ohms resistors.
Mathematically, the total equivalence resistance of two resistors that are connected in parallel is given by:
1/Rt = 1/R₁ + 1/R₂
1/Rt = 1/50 + 1/50
1/Rt = 2/50
1/Rt = 1/25
Rt = 25 Ohms.
Next, we would connect this 25 Ohms resistor in series with the 20 Ohms resistor:
R₃ = 20 + Rt
R₃ = 20 + 25
R₃ = 45 Ohms.
<h3>Part B.</h3>
In order to get a 35 Ohms resistance under the given circumstances, we would connect two 50 Ohms resistors in parallel and then connect it in series with two 20 Ohms resistors that are connected in parallel.
1/Rt = 1/R₁ + 1/R₂
1/Rt = 1/50 + 1/50
1/Rt = 2/50
1/Rt = 1/25
Rt = 25 Ohms.
1/R't = 1/R₁ + 1/R₂
1/R't = 1/20 + 1/20
1/R't = 2/20
1/R't = 1/10
R't = 10 Ohms.
Next, we would connect the 25 Ohms resistor in series with the 10 Ohms resistor:
R₃ = 10 + Rt
R₃ = 10 + 25
R₃ = 35 Ohms.
Read more on resistors in parallel here: brainly.com/question/15121871
#SPJ4
Complete Question:
You need a 45-ω resistor, but the stockroom has only 20-ω and 50-ω resistors.
(a) How can the desired resistance be achieved under these circumstances?
(b) What can you do if you need a 35-ω resistor?
Answer:
The situation where a seafloor plate slides under a continental plate during subduction is best described by convergent plate boundary.
Explanation:
The earth’s crust is broken down into tectonic plates that can move independently. They can interact in three different ways: converge (move toward one another), diverge (move away from one another) or transform (slide past one another). The three kinds of plate margins (boundaries where plates meet) are oceanic-oceanic, continental-continental, and continental-oceanic.
The regions where the plates are moving towards one another are known as convergent plate boundaries. During the convergence of continental and oceanic plates, the more-dense oceanic plate sinks below the less-dense continental plate and the oceanic plate is forced down further into the mantle. This is known as subduction. When the plate enters the mantle, the inside pressure breaks the rock. The broken rocks begins to melt from the heat due to the friction and as a result magma is formed. This magma rises toward the surface by breaking through the crust and forms a chain of volcanoes known as a volcanic arc such as the Cascade Mountains of North America and the Andes Mountains of South America.
During the convergence of two oceanic plates, one of the plates sinks underneath the other and forms an ocean trench (deep depression). The plate that sinks further down into the mantle starts to melt and as a result magma rises toward the surface and forms a chain of volcanic islands behind the ocean trench.
During the convergence of two continental plates, they buckle and compress to form complex mountains ranges of great height such as the Himalayas.