Answer:
3.036×10⁻¹⁰ N
Explanation:
From newton's law of universal gravitation,
F = Gm1m2/r² .............................. Equation 1
Where F = Gravitational force between the balls, m1 = mass of the first ball, m2 = mass of the second ball, r = distance between their centers.
G = gravitational constant
Given: m1 = 7.9 kg, m2 = 6.1 kg, r = 2.0 m, G = 6.67×10⁻¹¹ Nm²/C²
Substituting into equation 1
F = 6.67×10⁻¹¹×7.9×6.1/2²
F = 321.427×10⁻¹¹/4
F = 30.36×10⁻¹¹
F = 3.036×10⁻¹⁰ N
Hence the force between the balls = 3.036×10⁻¹⁰ N
a)., b)., and c). are completely false.
There isn't a grain of truth among them.
In Physics, the technical definition of 'Work' is (force) times (distance).
Answer:
<em>The period of the motion will still be equal to T.</em>
<em></em>
Explanation:
for a system with mass = M
attached to a massless spring.
If the system is set in motion with an amplitude (distance from equilibrium position) A
and has period T
The equation for the period T is given as

where k is the spring constant
If the amplitude is doubled, the distance from equilibrium position to the displacement is doubled.
Increasing the amplitude also increases the restoring force. An increase in the restoring force means the mass is now accelerated to cover more distance in the same period, so the restoring force cancels the effect of the increase in amplitude. Hence, <em>increasing the amplitude has no effect on the period of the mass and spring system.</em>
For this problem, we use the derived equations for rectilinear motion at constant acceleration. The equations used for this problem are:
a = (v - v₀)/t
2ax = v² - v₀²
where
a is the acceleration
x is the distance
v is the final velocity
v₀ is the initial velocity
t is the time
The solution is as follows;
a = (60mph - 30 mph)/(3 s * 1 h/3600 s)
a = 36,000 mph²
2(36,000 mph²)(x) = 60² - 30²
Solving for x,
x = 0.0375 miles