Answer:
mass of the second ball is 0.379m
Explanation:
Given;
mass of first ball = m
let initial velocity of first ball = u₁
let final velocity of first ball = v₁ = 0.45u₁
let the mass of the second ball = m₂
initial velocity of the second ball, u₂ = 0
let the final velocity of the second ball = v₂
Apply the principle of conservation of linear momentum;
mu₁ + m₂u₂ = mv₁ + m₂v₂
mu₁ + 0 = 0.45u₁m + m₂v₂
mu₁ = 0.45u₁m + m₂v₂ -------- equation (i)
Velocity for elastic collision in one dimension;
u₁ + v₁ = u₂ + v₂
u₁ + 0.45u₁ = 0 + v₂
1.45u₁ = v₂ (final velocity of the second ball)
Substitute in v₂ into equation (i)
mu₁ = 0.45u₁m + m₂(1.45u₁)
mu₁ = 0.45u₁m + 1.45m₂u₁
mu₁ - 0.45u₁m = 1.45m₂u₁
0.55mu₁ = 1.45m₂u₁
divide both sides by u₁
0.55m = 1.45m₂
m₂ = 0.55m / 1.45
m₂ = 0.379m
Therefore, mass of the second ball is 0.379m (where m is mass of the first ball)
Answer:
Explanation:
Given
mass flow rate=0.3 kg/s
diameter of pipe=5 cm
length of pipe=10 m
Inside temperature=22
Pipe surface =100
Temperature drop=30
specific heat of vapor(c)=2190 J/kg.k
heat supplied 
Heat due to convection =hA(100-30)




19,710=122.538 h

Answer:
Ball A
Explanation:
Let the initial speed of the balls be u .
Angle of projection for ball A = 20°
Angle of projection for ball B = 75°
As we know that at highest point, the ball has only horizontal speed which always remains constant throughout the motion because the acceleration in horizontal direction is zero.
Speed of ball A at highest point = u Cos 20° = 0.94 u
Speed of ball B at highest point = u Cos 75° = 0.26 u
So, the ball A has bigger speed than B.