Method 1:
Convert the mixed number to the improper fraction:
![1\dfrac{1}{2}=\dfrac{1\cdot2+1}{2}=\dfrac{3}{2}](https://tex.z-dn.net/?f=1%5Cdfrac%7B1%7D%7B2%7D%3D%5Cdfrac%7B1%5Ccdot2%2B1%7D%7B2%7D%3D%5Cdfrac%7B3%7D%7B2%7D)
Make the product:
![1\dfrac{1}{2}\cdot2=\dfrac{3}{2}\cdot2](https://tex.z-dn.net/?f=1%5Cdfrac%7B1%7D%7B2%7D%5Ccdot2%3D%5Cdfrac%7B3%7D%7B2%7D%5Ccdot2)
<em>canceled 2</em>
![=\dfrac{3}{\not2_1}\cdot\not2^1}=\boxed{3}](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B3%7D%7B%5Cnot2_1%7D%5Ccdot%5Cnot2%5E1%7D%3D%5Cboxed%7B3%7D)
Method 2:
![1\dfrac{1}{2}=1+\dfrac{1}{2}](https://tex.z-dn.net/?f=1%5Cdfrac%7B1%7D%7B2%7D%3D1%2B%5Cdfrac%7B1%7D%7B2%7D)
![1\dfrac{1}{2}\cdot2=\left(1+\dfrac{1}{2}\right)\cdot2](https://tex.z-dn.net/?f=1%5Cdfrac%7B1%7D%7B2%7D%5Ccdot2%3D%5Cleft%281%2B%5Cdfrac%7B1%7D%7B2%7D%5Cright%29%5Ccdot2)
<em>use the distributive property a(b + c) = ab + ac</em>
![(1)(2)+\left(\dfrac{1}{2}\right)(2)=2+1=\boxed{3}](https://tex.z-dn.net/?f=%281%29%282%29%2B%5Cleft%28%5Cdfrac%7B1%7D%7B2%7D%5Cright%29%282%29%3D2%2B1%3D%5Cboxed%7B3%7D)
DIY. I believe in you, its just a matter if you believe in yourself. Your welcome
Answer:
Point (2, 20) does not lie on the given curve.
Step-by-step explanation:
Let us see explanation:
![f(x) = 2. \: {5}^{x} \\ \\ \therefore \: f(x) \: at \: x = 2 \\ f(2) = 2. {5}^{2} = 2.25 = 50 \\ \\ hence \: at \: x = 2 \: \: f(x) = 50 \\ \therefore \:point (2 \: \: 20) \: does \: not \: lie \: on \: the \: \\ \: \: \: \: \: curve.](https://tex.z-dn.net/?f=f%28x%29%20%3D%202.%20%5C%3A%20%20%7B5%7D%5E%7Bx%7D%20%20%5C%5C%20%20%5C%5C%20%20%5Ctherefore%20%5C%3A%20f%28x%29%20%5C%3A%20at%20%5C%3A%20x%20%3D%202%20%5C%5C%20f%282%29%20%3D%202.%20%7B5%7D%5E%7B2%7D%20%20%3D%202.25%20%3D%2050%20%5C%5C%20%20%5C%5C%20hence%20%5C%3A%20at%20%5C%3A%20x%20%3D%202%20%5C%3A%20%20%5C%3A%20f%28x%29%20%3D%2050%20%5C%5C%20%20%5Ctherefore%20%5C%3Apoint%20%282%20%5C%3A%20%20%5C%3A%2020%29%20%5C%3A%20does%20%5C%3A%20not%20%5C%3A%20lie%20%5C%3A%20on%20%5C%3A%20the%20%5C%3A%20%5C%5C%20%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20%20%5C%3A%20curve.)
Answer:
C (X,Y)->(X-4,×-5) I would say bro
Answer:
f(x) = 26500 * (0.925)^x
It will take 7 years
Step-by-step explanation:
A car with an initial cost of $26,500 depreciates at a rate of 7.5% per year. Write the function that models this situation. Then use your formula to determine when the value of the car will be $15,000 to the nearest year.
To find the formula we will use this formula: f(x) = a * b^x. A is our initial value which in this case is $26500. B is how much the value is increasing or decreasing. In this case it is decreasing by 7.5% per year. Since the car value is decreasing we will subtract 0.075 from 1. This will result in the formula being f(x) = 26500 * (0.925)^x. Now to find the value of the car to the nearest year of when the car will be 15000 we plug 15000 into f(x). 15000 = 26500 * (0.925)^x. First we divide both side by 26500 which will make the equation: 0.56603773584=(0.925)^x. Then we will root 0.56603773584 by 0.925. This will result in x being 7.29968 which is approximately 7 years.