The 78g box, since it has less weight, would accelerate faster. If you had a frictionless surface, and you conducted this experiment, both boxes, without any outside forces, would accelerate at the same rate forever. However, in this problem we must assume the surface is not frictionless. Friction is determined by weight; the more weight, the more friction. Since the 78g box has less weight, it has less friction, making it easier to push with less force.
Answer:
The length of the stick is 0.28 m.
The time the stick take to move is 0.97 ns.
Explanation:
Given that,
Relative speed of stick v= 0.96 c
Speed of light 
Proper length of stick = 1 m
We need to calculate the length of the stick
Using formula of length

Put the value into the formula



We need to calculate the time the stick take to move
Using formula of time

Put the value into the formula



Hence, The length of the stick is 0.28 m.
The time the stick take to move is 0.97 ns.
Answer:
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Explanation:
For this problem let's use Newton's second law applied to each body
Body A
X axis
T = m_A a
Axis y
N- W_A = 0
Body B
Vertical axis
W_B - T = m_B a
In the reference system we have selected the direction to the right as positive, therefore the downward movement is also positive. The acceleration of the two bodies must be the same so that the rope cannot tension
We write the equations
T = m_A a
W_B –T = M_B a
We solve this system of equations
m_B g = (m_A + m_B) a
a = m_B / (m_A + m_B) g
In this initial case
m_A = M
m_B = M
a = M / (1 + 1) M g
a = ½ g
Let's find the tension
T = m_A a
T = M ½ g
T = ½ M g
Now we change the mass of the second block
m_B = 2M
a = 2M / (1 + 2) M g
a = 2/3 g
We seek tension for this case
T’= m_A a
T’= M 2/3 g
Let's look for the relationship between the tensions of the two cases
T’/ T = 2/3 M g / (½ M g)
T’/ T = 4/3
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e