Answer:
It is calculated by dividing Resistance, R, by Inductive reactance, XL.
Explanation:
Q is called the Q factor of a resonance circuit. In a parallel resonance circuit, it is calculated by finding the ratio of the power stored in the circuit to the power distributed in the circuit. It is a way of measuring the quality of a circuit or how effective the circuit is.
Q factor is the inverse in the resonance series circuit.
Q factor of a resonance parallel circuit,
<h3>
Q = R/XL</h3>
R = Resistance
XL = Inductive reactance
I believe the answer is 3). The cell wall provides protection, it doesn’t control movements of materials in and out of the cell.
Answer:
a)
b)
Explanation:
a)
The width of the central bright in this diffraction pattern is given by:
when m is a natural number.
here:
- m is 1 (to find the central bright fringe)
- D is the distance from the slit to the screen
- a is the slit wide
- λ is the wavelength
So we have:
b)
Now, if we do m=2 we can find the distance to the second minima.

Now we need to subtract these distance, to get the width of the first bright fringe :
I hope it heps you!
See from periodic table the proton or atomic number of elements u want to know about then as u know first electron shell can hold 2 electrons 2nd can hold eight as well as all others........protons are equal to electrons so divide proton number into shells but remember to use amounts which it can hold
CHEERS !!