The law of conservation of mass states that mass can be destroyed during a chemical change is TRUE
Answer:
To achieve the velocity of 40 m/sec height will become 4 times
Explanation:
We have given initially truck is at rest and attains a speed of 20 m/sec
Let the mass of the truck is m
At the top of the hill potential energy is mgh and kinetic energy is 
So total energy at the top of the hill 
At the bottom of the hill kinetic energy is equal to
and potential energy will be 0
So total energy at the bottom of the hill is equal to 
Form energy conservation 
, for v = 20 m/sec

Squaring both side

h = 20.408 m
Now if velocity is 0 m/sec


h = 81.63 m
So we can see that to achieve the velocity of 40 m/sec height will become 4 times
The image distance when a boy holds a toy soldier in front of a concave mirror, with a focal length of 0.45 m. is -0.56 m.
<h3>What is image distance?</h3>
This is the distance between the image formed and the focus when an object is placed in front of a plane mirror.
To calculate the image distance, we use the formula below.
Formula:
- 1/f = 1/u+1/v........... Equation 1
Where:
- f = Focal length of the mirror
- v = Image distance
- u = object distance
From the question,
Given:
Substitute these values into equation 1 and solve for the image distance
- 1/0.45 = 1/0.25 + 1/v
- 2.22 = 4+1/v
- 1/v = 2.22-4
- 1/v = -1.78
- v = 1/(-1.78)
- v = -0.56 m
Hence, The image distance is -0.56 m.
Learn more about image distance here: brainly.com/question/17273444
The answer to the given question above would be a PUNNETT SQAURE. SO the name of the <span>special science tool that he can use to predict genetic outcome is a PUNNETT SQUARE. Hope this answers your question. Have a great day ahead. Let me know if you need more help next time.</span>
Answer: B
Longitudinal wave
Explanation:
Transverse waves have crests and troughs
Longitudinal waves have compressions and rarefactions. A compression is where the density of the wave medium is highest. While a rarefaction is where the density of the wave medium is lowest.
Since sound wave is a longitudinal wave. And longitudinal wave exists apart from sound, we can therefore conclude that it's a longitudinal wave in spring.