Answer:

Explanation:
The acceleration of an object is the rate of change of velocity of the object.
Mathematically, it is calculated as:

where
u is the initial velocity
v is the final velocity
t is the time taken for the velocity to change from u to v
Acceleration is a vector, so it is important to also take into account the direction of the velocity.
For the particle in this problem, we have:
u = +48 m/s is the initial velocity (positive direction)
v = -92 m/s is the final velocity (negative direction)
t = 4.5 s is the time interval
Therefore, the average acceleration is

Answer:
I just took the quiz and got 100% when choosing A.Conservation. Hope this helps:)
8.16m is the required height, a 5kg stone need to be raised.
One sort of potential energy is gravitational potential energy, which is equal to the product of the object's mass (m), the gravitational acceleration (g), and the object's height (h) as measured in relation to the ground's surface (the body).
We obtain the formula by considering the work done in raising a mass m through a height h.
Work in elevating mass m through height h is equal to force times distance.
The force must be greater than the mass m's weight, hence F = mg.
Work done = mgh = gravitational potential energy
Energy = Mass of the object × gravitational acceleration × height.
Mass of the stone = 5kg
Equating ;
∴ 400 J = 5 kg × 9.8 m/s² × height
Height = 8.16 m
Therefore, 8.16m is the required height.
Learn more about energy here:
brainly.com/question/1242059
#SPJ1
The largest possible displacement on a circular track is the straight-line distance between the starting point and the point directly opposite it, half-way around the circle. That's the diameter of the track ... 204 meters.
Answer:
The value is 
Explanation:
From the question we are told that
The width of the slit is 
The distance of the screen from the slit is D = 1.25 m
The width of the central maximum is 
Generally the width of the central maximum is mathematically represented as

Here m is the order of the fringe and given that we are considering the central maximum, the order will be m = 1 because the with of the central maximum separate's the and first maxima
So

=> 
=> 
=> 