The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C
R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

Substitute numerical values:

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).
Learn more about Gaussian sphere here:
brainly.com/question/2004529
#SPJ4
A stream’s discharge rate if it has a width of 10 meters, a depth of 2 meters, and a velocity of 2 meters per second will be 40
/sec .
Discharge rate = velocity * area
= velocity * depth * width
= 2 * 2 * 10 = 40
/sec
A stream’s discharge rate if it has a width of 10 meters, a depth of 2 meters, and a velocity of 2 meters per second will be 40
/sec .
learn more about discharge rate
brainly.com/question/20709500?referrer=searchResults
#SPJ4
Answer:
A regulation game consists of 7 innings unless extended because of a tie score or unless shortened because the home team needs none or only a fraction of its 7th inning or unless 1 team is leading by 10 runs after 5 innings.
Explanation:
Answer:
a
The radial acceleration is 
b
The horizontal Tension is 
The vertical Tension is 
Explanation:
The diagram illustrating this is shown on the first uploaded
From the question we are told that
The length of the string is 
The mass of the bob is 
The angle made by the string is 
The centripetal force acting on the bob is mathematically represented as

Now From the diagram we see that this force is equivalent to
where T is the tension on the rope and v is the linear velocity
So

Now the downward normal force acting on the bob is mathematically represented as

So

=> 
=> 
The centripetal acceleration which the same as the radial acceleration of the bob is mathematically represented as

=> 
substituting values


The horizontal component is mathematically represented as

substituting value

The vertical component of tension is

substituting value

The vector representation of the T in term is of the tension on the horizontal and the tension on the vertical is

substituting value
![T = [(0.3294) i + (3.3712)j ] \ N](https://tex.z-dn.net/?f=T%20%20%3D%20%5B%280.3294%29%20i%20%20%2B%20%283.3712%29j%20%5D%20%5C%20%20N)