Answer:

Explanation:
<u>Mechanical Force</u>
According to the second Newton's law, the net force F exerted by an external agent on an object of mass m is:
F = m.a
Where a is the acceleration of the object.
Assume we apply some given force F to an object of m1=1 Kg that produces an acceleration
, then:
F = m1.a1
The same force F is now applied to a second object m2=4 Kg that produces an acceleration a2, then:
F = m2.a2
Dividing both equations:

Solving for a2:

Substituting values:


1/f= 1/di+1/do
1/f=1/90m+1/40m
1/f ≈27.7m
To develop this problem it is necessary to use the equations of description of the simple harmonic movement in which the acceleration and angular velocity are expressed as a function of the Amplitude.
Our values are given as


The angular velocity of a body can be described as a function of frequency as



PART A) The expression for the maximum angular velocity is given by the amplitude so that



PART B) The maximum acceleration on your part would be given by the expression



Answer:
work done lifting the bucket (sand and rope) to the top of the building,
W=67.46 Nm
Explanation:
in this question we have given
mass of bucket=20kg
mass of rope=
height of building= 15 meter
We have to find the work done lifting the bucket (sand and rope) to the building =work done in lifting the rope + work done in lifting the sand
work done in lifting the rope is given as,
=
..............(1)
=
=22.5 Nm
work done in lifting the sand is given as,
.................(2)
Here,
F=mx+c
here,
c=20-18
c=2
m=
m=.133
Therefore,

Put value of F in equation 2


Therefore,
work done lifting the bucket (sand and rope) to the top of the building,
W=22.5 Nm+44.96 Nm
W=67.46 Nm
Answer:
b
Explanation:
the ability for gases to compress is extremely helpful it allows tanks of oxygen to hold enough air for up to two hours and the strange thing about compression is that it allows some liquids to stay liquid at their boiling point allowing liquid nitrogen to stay liquid at room temperature