Answer:2. The number of miles driven and the amount of gas used.
Explanation:
Answer:
The time it will take for the car to reach a velocity of 28 m/s is 7 seconds
Explanation:
The parameters of the car are;
The acceleration of the car, a = 4 m/s²
The final velocity of the car, v = 28 m/s
The initial velocity of the car, u = 0 m/s (The car starts from rest)
The kinematic equation that can be used for finding (the time) how long it will take for the car to reach a velocity of 28 m/s is given as follows;
v = u + a·t
Where;
v = The final velocity of the car, v = 28 m/s
u = The initial velocity of the car = 0 m/s
a = The acceleration of the car = 4 m/s²
t = =The time it will take for the car to reach a velocity of 28 m/s
Therefore, we get;
t = (v - u)/a
t = (28 m/s - 0 m/s)/(4 m/s²) = 7 s
The time it will take for the car to reach a velocity of 28 m/s, t = 7 seconds.
Answer: 1) a = 9.61m/s² pointing to west.
2) (a) Δv = - 37.9km/s
(b) a = - 6.10⁷km/years
Explanation: Aceleration is the change in velocity over change in time.
1) For the plane:


a = 9.61m/s²
The plane is moving east, so velocity points in that direction. However, it is stopping at the time of 13s, so acceleration's direction is in the opposite direction. Therefore, acceleration points towards west.
2) Total change of velocity:


km/s
The interval is in years, so transforming seconds in years:
v = 
km/years
Calculating acceleration:


Acceleration of an asteroid is a = -6.10⁷km/years .
The correct formula for calculating the tangential speed of an orbiting object is V(t)=wr.
V(t)= Tangential Speed
w= Angular Velocity
r= Radius of the Path
Hope this helps.
If we assume that the acceleration is constant, we can use on the kinematic equations:
Vf = Vi + a*t = 15 + 3*4 = 27 m/s