Answer:16.3
Explanation:the
Explanation is in words
on a pic and i showed extra proof
Answer:
11.07Hz
Explanation:
Check the attachment for diagram of the standing wave in question.
Formula for calculating the fundamental frequency Fo in strings is V/2L where;
V is the velocity of the wave in string
L is the length of the string which is expressed as a function of its wavelength.
The wavelength of the string given is 1.5λ(one loop is equivalent to 0.5 wavelength)
Therefore L = 1.5λ
If L = 3.0m
1.5λ = 3.0m
λ = 3/1.5
λ = 2m
Also;
V = √T/m where;
T is the tension = 0.98N
m is the mass per unit length = 2.0g = 0.002kg
V = √0.98/0.002
V = √490
V = 22.14m/s
Fo = V/2L (for string)
Fo = 22.14/2(3)
Fo = 22.14/6
Fo = 3.69Hz
Harmonics are multiple integrals of the fundamental frequency. The string in question resonates in 2nd harmonics F2 = 3Fo
Frequency of the wave = 3×3.69
Frequency of the wave = 11.07Hz
Answer:
The pressure of the air molecules inside the pen cap increases and the volume occupied by the air decreases such that the combined volume occupied by the pen cap and the air volume reduces while the combined mass of the pen cap and the air molecules remain the same
Given that density = The mass/Volume, we have that the density varies inversely as the volume, and as the volume reduces, the density increases
Upon squeezing, therefore, as the new combined density of the pen cap and the air molecules rises to more than the density of the water in the bottle, then, the pen cap air molecule is relatively more denser than the water, which will result in the pen cap sinking to the bottom of the bottle
Explanation:
Answer:
90m/s
Explanation:
Given parameters:
Acceleration = 10m/s²
Time of fall = 9s
Unknown:
Final velocity = ?
Solution:
We can assume that the cart falls from rest.
Initial velocity = 0m/s
Using
v = u + gt
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
t is the time
v = 0 + 10 x 9 = 90m/s
Answer:
D . A mass of 5 kilograms lifted 5 meters in 10 second