1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lakkis [162]
3 years ago
12

Kelly is sledding on a snowy hill in the winter. The energy the sled has as it slides down the hill is a form of

Physics
2 answers:
viva [34]3 years ago
8 0

Answer:

chemical energy

andrey2020 [161]3 years ago
6 0
Potential energy is the answer
You might be interested in
People cut down a forest to bulid a housing development which of the following describes how this action will likely affect the
Ratling [72]

Answer:

It would mean less transpiration and the groundwater would start to make a landslide with no tree root to hold the earth in place

8 0
3 years ago
The rising and setting of the Moon is mostly caused by *
frez [133]

Answer:

Hey mate......

Explanation:

This is ur answer.....

<h2><em>A. Rotation of Earth</em></h2>

<em>The moon rises in the east and sets in the west, each and every day. It has to. The rising and setting of all celestial objects is due to Earth's continuous daily spin beneath the sky</em><em>.</em>

Hope it helps!

Brainliest pls!

Follow me! :)

4 0
3 years ago
Read 2 more answers
2. A 20 cm object is placed 10cm in front of a convex lens of focal length 5cm. Calculate
adoni [48]

Answer:

<u> </u><u>»</u><u> </u><u>Image</u><u> </u><u>distance</u><u> </u><u>:</u>

{ \tt{ \frac{1}{v}  +  \frac{1}{u} =  \frac{1}{f}  }} \\

  • v is image distance
  • u is object distance, u is 10 cm
  • f is focal length, f is 5 cm

{ \tt{ \frac{1}{v} +  \frac{1}{10} =  \frac{1}{5}   }} \\  \\  { \tt{ \frac{1}{v}  =  \frac{1}{10} }} \\  \\ { \tt{v = 10}} \\  \\ { \underline{ \underline{ \pmb{ \red{ \: image \: distance \: is \: 10 \: cm \:  \: }}}}}

<u> </u><u>»</u><u> </u><u>Magnification</u><u> </u><u>:</u>

• Let's derive this formula from the lens formula:

{ \tt{ \frac{1}{v}  +  \frac{1}{u} =  \frac{1}{f}  }} \\

» Multiply throughout by fv

{ \tt{fv( \frac{1}{v} +  \frac{1}{u} ) = fv( \frac{1}{f}  )}} \\   \\ { \tt{ \frac{fv}{v}  +  \frac{fv}{u}  =  \frac{fv}{f} }} \\  \\  { \tt{f + f( \frac{v}{u} ) = v}}

• But we know that, v/u is M

{ \tt{f + fM = v}} \\  { \tt{f(1 +M) = v }} \\ { \tt{1 +M =  \frac{v}{f}  }} \\  \\ { \boxed{ \mathfrak{formular :  } \: { \tt{ M =  \frac{v}{f}  - 1 }}}}

  • v is image distance, v is 10 cm
  • f is focal length, f is 5 cm
  • M is magnification.

{ \tt{M =  \frac{10}{5} - 1 }} \\  \\ { \tt{M = 5 - 1}} \\  \\ { \underline{ \underline{ \pmb{ \red{ \: magnification \: is \: 4}}}}}

<u> </u><u>»</u><u> </u><u>Nature</u><u> </u><u>of</u><u> </u><u>Image</u><u> </u><u>:</u>

  • Image is magnified
  • Image is erect or upright
  • Image is inverted
  • Image distance is identical to object distance.
4 0
2 years ago
Two charges are placed on the x axis. One of the charges (q1 = +7.7 µC) is at x1 = +3.1 cm and the other (q2 = -19 µC) is at x2
Alinara [238K]

Answer:

a)E=50.53\times 10^{6}\ N/C

The direction will be negative direction.

b)E=268.22\times 10^{6}\ N/C

The direction will be positive direction.

Explanation:

Given that

q1 = +7.7 µC is at x1 = +3.1 cm

q2 = -19 µC is at x2 = +8.9 cm

We know that electric filed due to a charge given as

E=K\dfrac{q}{r^2}

E_1=K\dfrac{q_1}{r_1^2}

E_2=K\dfrac{q_2}{r_2^2}

Now by putting the va;ues

a)

E_1=9\times 10^9\times \dfrac{7.7\times 10^{-6}}{0.031^2}\ N/C

E_1=72.11\times 10^{6}\ N/C

E_2=9\times 10^9\times \dfrac{19\times 10^{-6}}{0.089^2}\ N/C

E_2=21.58\times 10^{6}\ N/C

The net electric field

E=E_1-E_2

E=50.53\times 10^{6}\ N/C

The direction will be negative direction.

As we know that electric filed line emerge from positive charge and concentrated at negative charge.

b)

Now

distance for charge 1 will become =5.5 - 3.1 = 2.4 cm

distance for charge 2 will become =8.9-5.5 = 3.4 cm

E_1=9\times 10^9\times \dfrac{7.7\times 10^{-6}}{0.024^2}\ N/C

E_1=120.3\times 10^{6}\ N/C

E_2=9\times 10^9\times \dfrac{19\times 10^{-6}}{0.034^2}\ N/C

E_2=147.92\times 10^{6}\ N/C

The net electric field

E=E_1+E_2

E=268.22\times 10^{6}\ N/C

The direction will be positive direction.

   

7 0
3 years ago
What effects occur when heat energy is added to a system
Kobotan [32]
It could possibly melt things
6 0
3 years ago
Other questions:
  • What would you do to improve the precision of an experiment?
    5·2 answers
  • →15 points← Waiting for his new game to come in the mail, Billy races up the stairs in 3 seconds from the basement whenever he h
    15·1 answer
  • A 220 kg crate hangs from the end of a rope of length L = 14.0 m. You push horizontally on the crate with a varying force F to m
    6·1 answer
  • Calculate the peak voltage of a generator that rotates its 200-turn, 0.100 m diameter coil at 3600 rpm in a 0.800 T field.
    12·1 answer
  • What is the frequency of 20 mm microwaves? A) 100 MHz B) 400 MHz C) 15 GHz D) 73 GHz E) 98 GHz
    5·1 answer
  • What is tyndall effect​
    11·2 answers
  • The potential difference between two parallel plates is 227 V. If the plates are 6.8 mm apart, what is the electric field betwee
    9·1 answer
  • A uniform plane wave traveling in air is incident upon a flat, lossless, and infinite in extent dielectric interface with a diel
    14·1 answer
  • 5.
    5·1 answer
  • If the velocity of sound is 330m/s ,what is the wavelength of the wave of 100Hz ​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!