Answer:
The isotopic mass of 41K is 40.9574 amu
Explanation:
Step 1: Data given
The isotopes are:
39K with an isotopic mass of 38.963707u and natural abundance of 93.2581%
40K with an isotopic mass of 39.963999u
41K wit natural abundance of 6.7302 %
Average atomic mass =39.098 amu
Step 2: Calculate natural abundance of 40 K
100 % - 93.2581 % - 6.7302 %
100 % = 0.0117 %
Step 3: Calculate isotopic mass of 41K
39.098 = 38.963707 * 0.932581 + 39.963999 * 0.000117 + X * 0.067302
39.098 = 36.33681 + 0.0046758 + X * 2.067302
X = 40.9574 amu
The isotopic mass of 41K is 40.9574 amu
The beaker of acetic acid will cool more quickly.
The specific heat capacity of acetic acid is about half that of water.
Thus, it takes twice as much heat gain (or loss) in acetic acid to cause a given change in temperature.
If everything else is constant and heat is being lost at the same rate, the temperature of the acetic acid should drop twice as fast as that of water.
Answer:
Then, at some point, these higher energy electrons give up their "extra" energy in the form of a photon of light, and fall back down to their original energy level.
Explanation:
When properly stimulated, electrons in these materials move from a lower level of energy up to a higher level of energy and occupy a different orbital.
Answer:
It is necessary to use models to study sub- microscopic objects such as atoms and molecules because they are too small to be seen.
Answer:
8.6 mol
Explanation:
number of moles = molar concentration x volume in litre
number of moles = 2.33 M x 3.70 L = 8.6 mol