Answer:
Na and Cl
Explanation:
An ionic compound is solid at state room temperature. Therefore Na and Cl would be the correct answer :)
Answer:
<em>20 Liters</em>
Explanation:
If the pressure is supposed to be constant, one of Charles - Gay Lussac's laws can be used to solve the exercise. His statement says that "the volume of the gas is directly proportional to its temperature at constant pressure", mathematically it would be:

Considering T₁ = 50 ° C; V₁ = 10.0 L; and T₂ = 100 ° C, we can calculate the volume V₂ Clearing it from the equation and replacing the values to perform the calculation:
V2= (V1 x T2) / T1 = (10.0 L x 100°C) / 50 °C = 20 L
Therefore, <em>the gas at 100 ° C will occupy a volume of 20.0 L</em>.
Answer: An atom can be considered unstable in one of two ways. If it picks up or loses an electron, it becomes electrically charged and highly reactive. Such electrically charged atoms are known as ions. Instability can also occur in the nucleus when the number of protons and neutrons is unbalanced.
Explanation:
Density is given by the equation D=m/V, were D is density, m is mass in grams, and V is volume in cubic centimeters.
In this problem, we have density and we have mass so we can plug into the equation and solve for V.
38.6=270.2/V
<em>*Multiply both sides by V*</em>
38.6V=270.2
<em>*Divide both sides by 38.6*</em>
V=7
The volume of the gold nugget is 7cm3.
Hope this helps!!
Answer:
Tend to keep the product concetration <u>low</u> and therefore drive the reaction <u>righward</u>
Explanation:
The fact the products of a reaction are quickly consumed by the next one would tend to keep the product concetration low and therefore drive the reaction righward (to the products).
This happens because the system will not achive equilibrium between the reactants and the product, and will keep producing it util the system achives equilibrium or the reactants dry out.