The type of energy present in the vibrating atoms of a substance is a thermal energy and it is a kinetic type of energy. It is associated with movement within the crystal lattice of substance. ... Eventually, it can lead to motion of the atoms which is a form of kinetic energy.
Answer:
HCl is not a catalyst because these are not used up during the chemical reactions.
Explanation:
Hello there!
In this case, according to the performed experiments, it is possible for us to realize that HCl cannot be a catalyst for this reaction because it is used up during the reaction. This is explained by the fact that catalyst are able to return to the original form once the reaction has gone to completion; this is the example of palladium in the hydrogenation or dehydrogenation of hydrocarbons depending on the case. Moreover, we know that the catalysts increase the reaction rate because they decrease the activation energy of the reaction and therefore the student observed such increase.
Best regards!
Answer:
94.2 g/mol
Explanation:
Ideal Gases Law can useful to solve this
P . V = n . R . T
We need to make some conversions
740 Torr . 1 atm/ 760 Torr = 0.974 atm
100°C + 273 = 373K
Let's replace the values
0.974 atm . 1 L = n . 0.082 L.atm/ mol.K . 373K
n will determine the number of moles
(0.974 atm . 1 L) / (0.082 L.atm/ mol.K . 373K)
n = 0.032 moles
This amount is the weigh for 3 g of gas. How many grams does 1 mol weighs?
Molecular weight → g/mol → 3 g/0.032 moles = 94.2 g/mol
<em>Answer: </em>D
<em>Explanation:</em>
chemical formula of methane: CH4
electron configuration of C: 2,4
electron configuration of H: 1
there are 4 hydrogen atoms that donated 1 electron each to C
therefore it's D.
Yes ...................................