The mass of the product is <em>98.78 g.</em>
The word equation is
aluminum + chlorine → product
20.00 g + 98.78 g → <em>x</em> g
If each reactant is completely consumed, the <em>Law of conservation of Mass </em>tells us the mass of the product must be 98.78 g.
You should read up on Proust's law, better known as the Law of Definite Proportions. This is a chemical law that defines your question more generally, on why the ratio of elements and ions are always fixed.
Basically, this compound Magnesium(II) Chloride is MgCl2 because it has the same number of protons, neutrons, and electrons all the way. This defines the properties of the compound or atom.
Answer:
Bin 1 points to a carbon bonded to a double bonded carbon and single bonded to two hydrogens. --- trigonal planar, tetrahedral
Bin 2 points to a carbon double bonded to a carbon and single bonded to a carbon and one hydrogen.------- trigonal planar, tetrahedral
Bin 3 is a carbon single bonded to two carbons and single bonded to two hydrogens. ----- tetrahedral, tetrahedral
Bin 4 is the same as bin 3.--------tetrahedral, tetrahedral
Bin 5 is a carbon triple bonded to a carbon and single bonded to a carbon.---- linear, tetrahedral
Bin 6 is triple bonded to a carbon and single bonded to a hydrogen.---linear, tetrahedral
Explanation:
A single C-C or C-H bond is in a tetrahedral geometry, the carbon atom is bonded to four species with a bond angle of 109°.
A C=C bond is trigonal planar with a bond angle of 120°.
Lastly, a C≡C bond has a linear geometry with a bond angle of 180° between the atoms of the bond.
Answer:
Heat
Explanation:
Higher temperatures cause solid solutes to dissolve at a faster rate than normal
Is true. Nitrogen gas behaves more like an ideal gas as the
temperature increases. Under normal conditions such as normal pressure and temperature
conditions , most real gases behave qualitatively as an ideal gas. Many
gases such as air , nitrogen , oxygen ,hydrogen , noble gases , and some heavy
gases such as carbon dioxide can be treated as ideal gases within a reasonable tolerance. Generally,
the removal of ideal gas conditions tends to be lower at higher temperatures and lower density (that is at lower pressure ), since the work made by the intermolecular
forces is less important compared to the kinetic energy<span> of the particles, and the size of the molecules is less important
compared to the empty space between them. </span><span>The ideal gas model
tends to fail at lower temperatures or at high pressures, when intermolecular
forces and intermolecular size are important.</span>