Answer:
4
Step-by-step explanation:
Given
← evaluate the denominator
=
← perform the division
= 4
Answer:
10, 50, 150
Step-by-step explanation:
i just did it lol.
Answer:
88° and 132°
Step-by-step explanation:
The sum of angles in a pentagon ( a 5-sided shape) is given as
= (5 - 2) 180°
= 540°
The angles ∠EAB and ∠AED are supplementary hence the sum is 180° Therefore,
∠AED + 110 = 180
∠AED = 180 - 110
= 70°
Given that the sum of the angles in a pentagon is 540° then
110 + 70 + 2k + 140 + 3k = 540
5k + 320 = 540
5k = 540 - 320
5k = 220
k = 220/5
= 44°
Hence the angle ∠ABC
= 2 × 44
= 88°
∠CDE
= 3 × 44
= 132°
Answer:
x = 256
Step-by-step explanation:
Remark
Interesting question. Thanks for posting.
The small triangle has the height as the missing side.
Part One: Givens
a = 144
b = height = ?
c = 240
a^2 + b^2 = c^2
144^2 + b^2 = 240^2
20736 + b^2 = 57600 Subtract 20736 from both sides
b^2 = 57600 - 20736
b^2 = 36864
√b^2 = √36864
b = 192
Solve for x
The relationship between the height (b) and 144 and x is
b^2 = 144 * x
36864 = 144x Divide by 144
x = 256
Answer:
![L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ]](https://tex.z-dn.net/?f=L%28f%28t%29%29%20%3D%20%5Cdfrac%7B6%7D%7BS%5E2%2B1%7D%20%5B%5Csqrt%7B3%7D%20%5C%20S%20%2B1%20%5D)
Step-by-step explanation:
Given that:

recall that:
cos (A-B) = cos AcosB + sin A sin B
∴
![f(t) = 12 [cos\ t \ cos \dfrac{\pi}{6}+ sin \ t \ sin \dfrac{\pi}{6}]](https://tex.z-dn.net/?f=f%28t%29%20%3D%2012%20%5Bcos%5C%20%20t%20%5C%20%20cos%20%5Cdfrac%7B%5Cpi%7D%7B6%7D%2B%20sin%20%5C%20t%20%20%5C%20sin%20%5Cdfrac%7B%5Cpi%7D%7B6%7D%5D)
![f(t) = 12 [cos \ t \ \dfrac{3}{2}+ sin \ t \ sin \dfrac{1}{2}]](https://tex.z-dn.net/?f=f%28t%29%20%3D%2012%20%5Bcos%20%5C%20%20t%20%5C%20%5Cdfrac%7B3%7D%7B2%7D%2B%20sin%20%20%5C%20t%20%20%5C%20sin%20%5Cdfrac%7B1%7D%7B2%7D%5D)

![L(f(t)) = L ( 6 \sqrt{3} \ cos \ (t) + 6 \ sin \ (t) ]](https://tex.z-dn.net/?f=L%28f%28t%29%29%20%3D%20L%20%28%206%20%5Csqrt%7B3%7D%20%5C%20cos%20%5C%20%28t%29%20%2B%206%20%5C%20sin%20%5C%20%28t%29%20%5D)
![L(f(t)) = 6 \sqrt{3} \ L [cos \ (t) ] + 6\ L [ sin \ (t) ]](https://tex.z-dn.net/?f=L%28f%28t%29%29%20%3D%206%20%5Csqrt%7B3%7D%20%5C%20L%20%5Bcos%20%5C%20%28t%29%20%5D%20%2B%206%5C%20L%20%5B%20sin%20%5C%20%28t%29%20%5D)



![L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ]](https://tex.z-dn.net/?f=L%28f%28t%29%29%20%3D%20%5Cdfrac%7B6%7D%7BS%5E2%2B1%7D%20%5B%5Csqrt%7B3%7D%20%5C%20S%20%2B1%20%5D)