Answer:
t = 13.43 s
Explanation:
In order to find the minimum time required by the plane to stop, we will use the first equation of motion. The first equation of motion is written as follows:
Vf = Vi + at
where,
Vf = Final Velocity of the Plane = 0 m/s (Since, the plane finally stops)
Vi = Initial Velocity of the Plane = 95 m/s
a = deceleration of the plane = - 7.07 m/s²
t = minimum time interval needed to stop the plane = ?
Therefore,
0 m/s = 95 m/s + (- 7.07 m/s²)t
t = (95 m/s)/(7.07 m/s²)
<u>t = 13.43 s</u>
Answer:
778 J
Explanation:
Rotational energy is:
RE = ½ Iω²
For a solid cylinder I = ½ mr².
Rolling without slipping means ω = v/r.
RE = ½ (½ mr²) (v/r)²
RE = ¼ mv²
Plug in values:
RE = ¼ (34.5 kg) (9.5 m/s)²
RE ≈ 778 J
Round as needed.
Answer:
3.15m³
Explanation:
To solve this problem, let us first find the mass of the petrol from the given dimension.
Mass = density x volume
Volume of petrol = 4.2m³
Density of petrol = 0.3kgm⁻³
Mass of petrol = 4.2 x 0.3 = 1.26kg
So;
We can now find the volume of the alcohol
Volume of alcohol =
Mass of alcohol = 1.26kg
Density of alcohol = 0.4kgm⁻³
Volume of alcohol =
= 3.15m³
Answer: Weak Legs and Glutes
Explanation: Cause ur legs go brrrrrr
Answer:
A) mr = 100 kg
B) Fr = 210N
C) Ft = -199.5N
Explanation:
By conservation of the momentum:
mt*Vo = (mr + mt) * Vf Solving for mr:
mr = mt*Vo / Vf - mt = 100 kg
The average force on the receiver:
mr *(Vf - 0) = Fr * Δt Solving for Fr:
Fr = 210 N
The average force on the tackler:
mt * (Vf - Vo) = Ft * Δt Solving for Ft:
Ft = -199.5 N