To solve this problem we will apply the concepts related to energy conservation. From this conservation we will find the magnitude of the amplitude. Later for the second part, we will need to find the period, from which it will be possible to obtain the speed of the body.
A) Conservation of Energy,


Here,
m = Mass
v = Velocity
k = Spring constant
A = Amplitude
Rearranging to find the Amplitude we have,

Replacing,


(B) For this part we will begin by applying the concept of Period, this in order to find the speed defined in the mass-spring systems.
The Period is defined as

Replacing,


Now the velocity is described as,


We have all the values, then replacing,


Answer:
True
Explanation:
i searched it up and well this thing is making me do it up till 20 characters long so yea
A 100 g cart is moving at 0.5 m/s that collides elastically from a stationary 180 g cart. Final velocity is calculated to be 0.25m/s.
Collision in which there is no net loss in kinetic energy in the system as a result of the collision is known as elastic collision . Momentum and kinetic energy both are conserved quantities in elastic collisions.
Collision in which part of the kinetic energy is changed to some other form of energy is inelastic collision.
For an elastic collision, we use the formula,
m₁V₁i+ m₂V₂i = m₁V1f + m₂V₂f
For a perfectly elastic collision, the final velocity of the 100g cart will each be 1/2 the velocity of the initial velocity of the moving cart.
Final velocity = 0.5/2
=0.25 m/s.
To know more about elastic collision, refer
brainly.com/question/7694106
#SPJ4
Answer:
F= 600 N
Explanation:
Given that
Initial velocity ,u= 0 m/s
Final velocity ,v= 30 m/s
mass ,m = 0.5 kg
time ,t= 0.025 s
The change in the linear momentum is given as
ΔP= m (v - u)
ΔP= 0.5 ( 30 - 0 ) kg.m/s
ΔP= 15 kg.m/s
We know that from second law of Newtons


Now by putting the values

F= 600 N