Answer:
Work: 4.0 kJ, heat: 4.25 kJ
Explanation:
For a gas transformation at constant pressure, the work done by the gas is given by

where in this case we have:
is the pressure
is the initial volume
is the final volume
Substituting,

The 1st law of thermodynamics also states that

where
is the change in internal energy of the gas
Q is the heat absorbed by the gas
Here we know that

Therefore we can re-arrange the equation to find the heat absorbed by the gas:

Answer:
noooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo i said nooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
Explanation:
<span>B. shining a bright light on the objects
and testing for decomposition </span>
<span>
In explanation, chemical property is a
characteristic of a certain substance came from an outcome due to chemical change
or reaction. In the situation above, more specifically toxicity is involved in
the chemical property/change. Hence, when the object is tested for
decomposition. Like for an example of decomposition simply in metals, rusting. Rusting
a process of degeneration of metals. Here it works the same. Toxicity is how
much damage did a certain entity do to the object. </span>
1 kg ball can have more kinetic energy than a 100 kg ball as increase in velocity is having greater impact on K.E than increase in mass.
<u>Explanation</u>:
We know kinetic energy can be judged or calculated by two parameters only which is mass and velocity. As kinetic energy is directly proportional to the
and increase in velocity leads to greater effect on translational Kinetic Energy. Here formula of Kinetic Energy suggests that doubling the mass will double its K.E but doubling velocity will quadruple its velocity:

Better understood from numerical example as given:
If a man A having weight 50 kg run with speed 5 m/s and another man B having 100 kg weight run with 2.5 m / s. Which man will have more K.E?
This can be solved as follows:


It shows that man A will have more K.E.
Hence 1 kg ball can have more K.E than 100 kg ball by doubling velocity.