1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kogti [31]
3 years ago
5

A street musician sounds the A string of his violin, producing a tone of 440 Hz, What frequency does a bicyclist hear as he a) a

pproaches and b) recedes from the musician with a speed of 11.0 m/s?
Physics
1 answer:
DanielleElmas [232]3 years ago
6 0

Answer:

a) f_o=454.11Hz

b)f_o=425.89Hz

Explanation:

Let´s use Doppler effect, in order to calculate the observed frequency by the byciclist. The Doppler effect equation for a general case is given by:

f_o=\frac{v\pm v_o}{v\pm v_s} *f_s

where:

f_o=Observed\hspace{3}frequency

f_s=Actual\hspace{3}frequency

v=Speed\hspace{3}of\hspace{3}the\hspace{3}sound\hspace{3}waves

v_s=Velocity\hspace{3}of\hspace{3}the\hspace{3}source

v_o=Velocity\hspace{3}of\hspace{3}the\hspace{3}observer

Now let's consider the next cases:

+v_o\hspace{3}is\hspace{3}used\hspace{3}when\hspace{3}the\hspace{3}observer\hspace{3}moves\hspace{3}towards\hspace{3}the\hspace{3}source

-v_o\hspace{3}is\hspace{3}used\hspace{3}when\hspace{3}the\hspace{3}observer\hspace{3}moves\hspace{3}away\hspace{3}from\hspace{3}the\hspace{3}source

-v_s\hspace{3}is\hspace{3}used\hspace{3}when\hspace{3}the\hspace{3}source\hspace{3}moves\hspace{3}towards\hspace{3}the\hspace{3}observer

+v_s\hspace{3}is\hspace{3}used\hspace{3}when\hspace{3}the\hspace{3}source\hspace{3}moves\hspace{3}away\hspace{3}from\hspace{3}the\hspace{3}observer

The data provided by the problem is:

f_s=440Hz\\v_o=11m/s

The problem don't give us aditional information about the medium, so let's assume the medium is the air, so the speed of sound in air is:

v=343m/s

Now, in the first case the observer alone is in motion towards to the source, hence:

f_o=\frac{v+v_o}{v}*f_s=\frac{343+11}{343} *440=454.1107872Hz

Finally, in the second case the observer alone is in motion away from the source, so:

f_o=\frac{v-v_o}{v}*f_s=\frac{343-11}{343} *425.8892128Hz

You might be interested in
The sun _____.
enyata [817]

The sun <u><em>appears</em></u> brighter than any other star.

(It isn't really, but it looks that way because it's much much much much much much closer to us than any other star.)

7 0
3 years ago
The cricket player while catches the ball wears gloves and why​
gregori [183]

Answer:

the ball is travelling very fast and the player can get injured if he doesn't wear gloves

Explanation:

3 0
3 years ago
Two water balloons of mass 0.75 kg collide and bounce off of each other without breaking. Before the collision, one water balloo
bagirrra123 [75]
By the law of momentum conservation:-
=>m¹u¹ + m²u² = m1v1 + m²v² {let East is +ve}
=>u¹ + u² = v¹ + v² {as m1=m2}
=>3.5 - 2.75 = v1-1.5
<span> =>v¹ = 2.25 m/s (East) </span>
5 0
3 years ago
Racing cars driven by chris and kelly are side by side at the start of a race. the table shows the velocities of each car (in mi
Mamont248 [21]

Solution

distance travelled by Chris

\Delta t=\frac{1}{3600}hr.

X_{c}= [(\frac{21+0}{2})+(\frac{33+21}{2})+(\frac{55+47}{2})+(\frac{63+55}{2})+(\frac{70+63}{2})+(\frac{76+70}{2})+(\frac{82+76}{2})+(\frac{87+82}{2})+(\frac{91+87}{2})]\times\frac{1}{3600}

=\frac{579.5}{3600}=0.161miles

Kelly,

\Delta t=\frac{1}{3600}hr.

X_{k}=[(\frac{24+0}{2})+(\frac{3+24}{2})+(\frac{55+39}{2})+(\frac{62+55}{2})+(\frac{71+62}{2})+(\frac{79+71}{2})+(\frac{85+79}{2})+(\frac{85+92}{2})+(\frac{99+92}{2})+(\frac{103+99}{2})]\times\frac{1}{3600}

=\frac{657.5}{3600}

\Delta X=X_{k}-X_{C}=0.021miles

4 0
3 years ago
5. A family leaves for an evening walk around the neighborhood. They leave at 5 pm and return at 6 pm. They traveled a total of
vlabodo [156]

This question involves the concepts of average speed, distance, and time.

The average speed of the family is "2.5 mi/hr".

<h3>AVERAGE SPEED</h3>

The average speed is defined as the ratio of the total distance covered with the total time taken to cover it.

v=\frac{s}{t}

where,

  • s = distance covered = 2.5 miles
  • t = total time taken = 1 hour
  • v = average speed = ?

Therefore,

v=\frac{2.5\ mi}{1\ hr}

v = 2.5 mi/hr

Learn more about average speed here:

brainly.com/question/12322912

4 0
2 years ago
Other questions:
  • When energy is transferred from the air to the water, what happens to most of the energy?
    12·2 answers
  • If fluorine was in ionic compounds with ions of each of the following atoms, how many fluorines would be needed?
    14·1 answer
  • When a cell divides to help repair an organism, what type of cell division is it?
    7·1 answer
  • What will happen if a low massive main sequence star runs out of hydrogen fuel?​
    10·1 answer
  • To get an idea of the order of magnitude of inductance, calculate the self-inductance in henries for a solenoid with 900 loops o
    5·1 answer
  • What does cardiorespiratory fitness measure?
    15·1 answer
  • When a cannon fires a cannonball we observe Newton's third law. Which is the reaction force? A) The cannon moving forward B) The
    13·2 answers
  • How are electromagnetic waves used in a bar-code scanner?
    11·1 answer
  • C6H12O6 + 6O2 6CO2+6H2O + energy Which statement correctly compares the reactants and products of the equation?
    9·1 answer
  • The conservation of momentum is most closely related to
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!