1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nuetrik [128]
3 years ago
10

What decimal number is halfway between 20 and 21?

Mathematics
1 answer:
love history [14]3 years ago
6 0

Answer:

20.5

Step-by-step explanation:

(20+21)/2 = 20.5

:) Hope this helps, please mark as brainliest!

You might be interested in
B =<br> Round your answer to the nearest hundredth.<br> please help
Savatey [412]

Answer:

26.39

Step-by-step explanation:

sin B = 4/9

B = inverse sin 4/9 = 26.387

5 0
3 years ago
Read 2 more answers
You are working in a primary care office. Flu season is starting. For the sake of public health, it is critical to diagnose peop
Aleksandr-060686 [28]

Answer:

E. 0.11

Step-by-step explanation:

We have these following probabilities:

A 10% probability that a person has the flu.

A 90% probability that a person does not have the flu, just a cold.

If a person has the flu, a 99% probability of having a runny nose.

If a person just has a cold, a 90% probability of having a runny nose.

This can be formulated as the following problem:

What is the probability of B happening, knowing that A has happened.

It can be calculated by the following formula

P = \frac{P(B).P(A/B)}{P(A)}

Where P(B) is the probability of B happening, P(A/B) is the probability of A happening knowing that B happened and P(A) is the probability of A happening.

In this problem, we have that:

What is the probability that a person has the flu, given that she has a runny nose?

P(B) is the probability that a person has the flu. So P(B) = 0.1.

P(A/B) is the probability that a person has a runny nose, given that she has the flu. So P(A/B) = 0.99.

P(A) is the probability that a person has a runny nose. It is 0.99 of 0.1 and 0.90 of 0.90. So

P(A) = 0.99*0.1 + 0.9*0.9 = 0.909

What is the probability that this person has the flu?

P = \frac{P(B).P(A/B)}{P(A)} = \frac{0.1*0.99}{0.909} = 0.1089 = 0.11

The correct answer is:

E. 0.11

5 0
3 years ago
A skirt that usually sells for $40 is on sale for $30. What is the discount percent?
Alborosie
10/40 * 100= 25%

25% is the answer.
6 0
3 years ago
Student scored in the 83rd
melamori03 [73]

Answer:b

Step-by-step explanation:

5 0
3 years ago
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with the specified value of n.
Vera_Pavlovna [14]

Split up the integration interval into 4 subintervals:

\left[0,\dfrac\pi8\right],\left[\dfrac\pi8,\dfrac\pi4\right],\left[\dfrac\pi4,\dfrac{3\pi}8\right],\left[\dfrac{3\pi}8,\dfrac\pi2\right]

The left and right endpoints of the i-th subinterval, respectively, are

\ell_i=\dfrac{i-1}4\left(\dfrac\pi2-0\right)=\dfrac{(i-1)\pi}8

r_i=\dfrac i4\left(\dfrac\pi2-0\right)=\dfrac{i\pi}8

for 1\le i\le4, and the respective midpoints are

m_i=\dfrac{\ell_i+r_i}2=\dfrac{(2i-1)\pi}8

  • Trapezoidal rule

We approximate the (signed) area under the curve over each subinterval by

T_i=\dfrac{f(\ell_i)+f(r_i)}2(\ell_i-r_i)

so that

\displaystyle\int_0^{\pi/2}\frac3{1+\cos x}\,\mathrm dx\approx\sum_{i=1}^4T_i\approx\boxed{3.038078}

  • Midpoint rule

We approximate the area for each subinterval by

M_i=f(m_i)(\ell_i-r_i)

so that

\displaystyle\int_0^{\pi/2}\frac3{1+\cos x}\,\mathrm dx\approx\sum_{i=1}^4M_i\approx\boxed{2.981137}

  • Simpson's rule

We first interpolate the integrand over each subinterval by a quadratic polynomial p_i(x), where

p_i(x)=f(\ell_i)\dfrac{(x-m_i)(x-r_i)}{(\ell_i-m_i)(\ell_i-r_i)}+f(m)\dfrac{(x-\ell_i)(x-r_i)}{(m_i-\ell_i)(m_i-r_i)}+f(r_i)\dfrac{(x-\ell_i)(x-m_i)}{(r_i-\ell_i)(r_i-m_i)}

so that

\displaystyle\int_0^{\pi/2}\frac3{1+\cos x}\,\mathrm dx\approx\sum_{i=1}^4\int_{\ell_i}^{r_i}p_i(x)\,\mathrm dx

It so happens that the integral of p_i(x) reduces nicely to the form you're probably more familiar with,

S_i=\displaystyle\int_{\ell_i}^{r_i}p_i(x)\,\mathrm dx=\frac{r_i-\ell_i}6(f(\ell_i)+4f(m_i)+f(r_i))

Then the integral is approximately

\displaystyle\int_0^{\pi/2}\frac3{1+\cos x}\,\mathrm dx\approx\sum_{i=1}^4S_i\approx\boxed{3.000117}

Compare these to the actual value of the integral, 3. I've included plots of the approximations below.

3 0
3 years ago
Other questions:
  • I need help..............
    15·1 answer
  • Please help! This is due tomorrow. ;c
    13·1 answer
  • Jamie lost 27 pounds in one year. on average how many pounds did jamie lose per month?
    7·2 answers
  • I need help with this question
    5·2 answers
  • X+1½= 3 ⅓<br>What does x equal?​
    9·2 answers
  • A) |9+x|=2x<br> b) |x+6|=2x+9
    8·1 answer
  • What is the equation of the line shown written in slope-intercept form?
    15·2 answers
  • 1. Which expression is equivalent to 4(x + 1) – 7(x + 3)?
    9·2 answers
  • Need help with this asap!!
    12·1 answer
  • Hiiii! Can someone help me plsss
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!