Answer:
Organic matter decomposition serves two functions for the microorganisms, providing energy for growth and suppling carbon for the formation of new cells. ... Dead plant residues and plant nutrients become food for the microbes in the soil
Explanation:
Answer:
The power output of the first motor is, P = 2.0 x 10⁴ watts
Explanation:
Given data,
The height of the building, h = 10 m
The mass of the elevator, m = 1000 kg
The time duration of the motor to do this work, t = 5.0 s
The force acting on the elevator,
F = m x g
= 1000 x 9.8
= 9800 N
The work done by the elevator,
W = F x h
= 9800 x 10
= 98000 J
The power output of the first motor,
P = W / t
= 98000 / 5
= 19600 watts
= 1.96 x 10⁴ watts
Hence, the power output of the first motor is, P = 2.0 x 10⁴ watts
Answer: 1.91*10^8 N/m²
Explanation:
Given
Radius of the steel, R = 10 mm = 0.01 m
Length of the steel, L = 80 cm = 0.8 m
Force applied on the steel, F = 60 kN
Stress on the rod, = ?
Area of the rod, A = πr²
A = 3.142 * 0.01²
A = 0.0003142
Stress = Force applied on the steel/Area of the steel
Stress = F/A
Stress = 60*10^3 / 0.0003142
Stress = 1.91*10^8 N/m²
From the calculations above, we can therefore say, the stress on the rod is 1.91*10^8 N/m²
<span>A student hears a police siren.
The arithmetic of the Doppler Effect shows that if the distance between
the source and observer is changing, then the observer hears a different
frequency compared to the frequency actually radiating from the source.
Thus the first four choices would cause the student to hear a different
frequency:
-- if the student walked toward the police car
-- if the student walked away from the police car
-- if the police car moved toward the student
-- if the police car moved away from the student
The last two choices wouldn't affect the frequency heard by the student,
since the perceived frequency of a sound doesn't depend on its intensity.
-- if the intensity of the siren increased
-- if the intensity of the siren decreased.</span>