Answer:
To determine the mystery component we will connect the mystery component to a DC voltage source, then I will measure the resistance of the component with the use of Ohmmeter, the value of the resistance of the mystery component will determine what the mystery component is
if the resistance > 1( very high ) then component is a capacitor
if the resistance = 0 then component is an inductor
Explanation:
To determine the mystery component we will connect the mystery component to a DC voltage source, then I will measure the resistance of the component with the use of Ohmmeter, the value of the resistance of the mystery component will determine what the mystery component is
if the resistance > 1( very high ) then component is a capacitor
if the resistance = 0 then component is an inductor
Potential energy is a relative measure, so the answer is dependent on the assumptions we make. The potential energy in the car is going to be gravitational potential energy(PE). PE = mgh, where m is the mass, g is 9.8 m/s^2, and h is the height. So PE = 2000*9.8*h = 19600h. The final answer obviously depends on h. Most likely the problem is assuming that 30 meters under the top of the hill is considered 0 meters. Then h would be 30m and PE would equal 588 kJ.
Answer:
Explanation:
We know that
Δr = r₁ - r₀
r₀ = 0 i + 0 j
r₁ = (162+137*Cos(31º)+137*Cos(-48º)) i + (0+137*Sin(31º)+137*Sin(-48º)) j = (371.1028 i - 31.2506 j) ft
Δr = r₁ - r₀ = (371.1028 i - 31.2506 j) - (0 i + 0 j) = (371.1028 i - 31.2506 j) ft
Magnitude:
Δr = √((371.1028)²+(-31.2506)²) = 372.4163 ft
Angle:
tan θ = (- 31.2506 / 371.1028) = -0.0839 ⇒ θ = tan⁻¹(-0.0839) = - 4.8135º
(below the horizontal).