A long chain of hydrocarbon bonded to COOH is a FATTY acid.
Answer:
Screening for the presence of drugs in serum and urine using different separation modes of capillary electrophoresis. The most common mode is capillary zone electrophoresis (CZE), in which charged analytes migrate in a buffer under the influence of an electric field.
Explanation:
Answer:
✓ scholastics
Explanation:
you d.ont need a expla.nation rig.ht un.less y.ou wan.na re.ad for an h.our
<h3>
Answer:</h3>
134 atm
<h3>
Explanation:</h3>
- Based on the pressure law, the pressure of a gas varies directly proportionally to the absolute temperature at a constant volume.
- Therefore; we are going to use the equation;

In this case;
Initial pressure, P1 = 144 atm
Initial temperature, T1 (48°C) = 321 K
Final temperature, T2 (25°C) = 298 K
We need to find the final pressure,
Therefore;
P2 = (P1/T1)T2
= (144/321)× 298 K
= 133.68 atm
= 134 atm
Therefore, the new pressure will be 134 atm.
Answer:
a) Aqueous LiBr = Hydrogen Gas
b) Aqueous AgBr = solid Ag
c) Molten LiBr = solid Li
c) Molten AgBr = Solid Ag
Explanation:
a) Aqueous LiBr
This sample produces Hydrogen gas, because the H+ (conteined in the water) has a reduction potential higher than the Li+ from the salt. Therefore the hydrogen cation will reduce instead of the lithium one and form the gas.
b) Aqueous AgBr
This sample produces Solid Ag, because the Ag+ has a reduction potential higher than the H+ from the water. Therefore the silver cation will reduce instead of the hydrogen one and form the solid.
c) Molten LiBr
In a molten binary salt like LiBr there is only one cation present in the cathod. In this case the Li+, so it will reduce and form solid Li.
c) Molten AgBr
The same as the item above: there is only one cation present in the cathod. In this case the Ag+, so it will reduce and form solid Ag.