Q1: sort your numbers into numerical order so you can determine the highest and lowest measured values. and then subtract the lowest measured value from the highest measured value. Now determine that the answer is the precision.
Q2: In one meter there are 100 centemeter. Now you got 5.8 miles per hour which will become 580 centemeter per hour. In addition, there are 60 minutes in an hour. Based on what we know, 580 centemeters per hour will and should become 580/60 cm/min
You can't usually just use a single spectrum line to confirm the identity of an element because there are cases that the emission line id not clearly defined. When the emission line is very weak compared to surrounding noise, in which case the more datapoints you have to build up confidence for the existence of a particular emission spectra, the better.
2.22x10^-3 would be the answer to the question
please mark as brainliest answer
Answer:
v = 37.9 ml
Explanation:
Given data:
Mass of compound = 1.56 kg
Density = 41.2 g/ml
Volume of compound = ?
Solution:
First of all we will convert the mass into g.
1.56 ×1000 = 1560 g
Formula:
D=m/v
D= density
m=mass
V=volume
v = m/d
v = 1560 g / 41.2 g/ml
v = 37.9 ml
<span> Au</span>₂(SeO₄)₃
O = -2 × 4 = -8
Se = + 6
So,
(+6 - 8) = -2
Means (SeO₄) contains -2 charge, Now multiply -2 by 3
-2 ₓ 3 = -6
Means,
Au₂ + (-6) = 0
Au₂ = +6
Or,
Au = 6 / 2
Au = +3
Result:
Au = +3
Se = +6
O = -2
Ni(CN)₂
Cyanide (CN⁻) contains -1 charge,
So,
N = -3
C = +2
Then,
Ni + (-1)₂ = 0
Ni - 2 = 0
Or,
Ni = +2
Result:
N = -3
C = +2
Ni = +2