<u>Answer:</u>
The mass of the atom depends on the sub atomic particles present in the nucleus of an atom.
That is, the protons and the neutrons.
Electrons are present around the nucleus and the mass is negligible since its mass is very very less.
<em>mass of a proton =
</em>
<em>mass of a neutron =
</em>
<em>mass of an electron =
</em>
Mass number represents the mass of one particular isotope and it is a whole number for example,
Mass number is 13 and atomic number is 6 for the carbon isotope C-13.
Atomic mass is different from mass number and it is a fraction since it is the average atomic mass of all the isotopes of an atom.
Atomic mass of C is 12.011 amu which we see in the periodic table is the average atomic mass of isotopes C-12, C-13 and C-14.
Answer:
5 L.
Explanation:
From the question given above, the following data were obtained:
Initial volume (V1) = 10 L
Initial pressure (P1) = 2.5 atm
Final pressure (P2) = 5 atm
Final volume (V2) =.?
Since the temperature is constant, we shall apply the Boyle's law equation to determine the new volume of the gas. This can be obtained as follow:
P1V1 = P2V2
2.5 × 10 = 5 × V2
25 = 5 × V2
Divide both side by 5
V2 =25/5
V2 = 5 L
Thus, the new volume of the gas is 5 L
One Hydrogen atom (H) and one Oxygen atom (O) surround the central Carbon atom (C) in the HCP Lewis structure (O). Carbon (C) and Phosphorus (P) have a triple bond, and Carbon (C) and Hydrogen (H) have a single bond.
<h3>How can you choose the ideal format for a formal charge?</h3>
The Lewis structure with the negative formal charges on the most electronegative atoms is the one to choose from when faced with a choice between numerous Lewis structures with similar formal charge distributions.
<h3>How do you determine the preferred resonance structure?</h3>
The resonance forms with the fewest non-zero formal charge atoms are selected. Resonance develops atoms that have a negative formal charge or are the most electronegative are preferred.
To know more about Lewis structure visit:-
brainly.com/question/20300458
#SPJ4
Shred red cabbage ~ (3/4 of a very small head)
Put the cabbage pieces in a small container ~ ( you can use a Pyrex-4-cup measure, a bowl or even a plastic zipper bag)
Cover the cabbage with very hot water. Let it sleep until the water has cooled. (somewhere between lukewarm and room-temperature)
The purple liquid you've made is your indicator.
Pour it into a container and compost the cabbage.
Now look for substances that may be acids or bases.
Liquids are good, like fruits.
You can also use solids around for baking are good too. (such as baking soda, salt, sugar, cream of tartar...)
Get containers for mixing (such as tea cups, because they are small, shallow and white inside)
Pour the indicator into the tea cups and add an acid or base.
Lemon juice, rice wine vinegar, and apple cider vinegar, turn the cabbage-water indicator into a pink.
Orange juice or fresh oranges (same thing) turn the cabbage-water indicator into an orangish-pinkish color.
Baking soda turns the cabbage-water indicator blue.
Milk (non-fat) turns the cabbage-water indicator turn opaque and milky, yet purple.
An egg white (which won't get into the solution immediately until after a lot of stirring) turns the cabbage-water indicator blue.
Hint:
Bases mostly turn the indicator towards blue-ish colors such as purple, light blue, dark blue, opaque blue...
Acids mostly turn the indicator towards pink-ish colours such as orange-ish pink, floral pink...
(You'll have to keep on testing the cabbage-water indicator in after a day or two to see if the indicator quality persists or degrades.
Answer:
2,7 m
Explanation:
You can solve this doing an energy balance:
![m*g*h-\frac{1}{2} *m*v^{2} =41,7[J]](https://tex.z-dn.net/?f=m%2Ag%2Ah-%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%3D41%2C7%5BJ%5D)
Solving this equation to get h:

Replacing the values and solving brings to 2,7 m