Answer:
pH of buffer =4.75
Explanation:
The pH of buffer solution is calculated using Henderson Hassalbalch's equation:
![pH=pKa+log[\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%5B%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
Given:
pKa = 3.75
concentration of acid = concentration of formic acid = 1 M
concentration of salt = concentration of sodium formate = 10 M
![pH=3.75+log[\frac{10}{1}]=3.75+1=4.75](https://tex.z-dn.net/?f=pH%3D3.75%2Blog%5B%5Cfrac%7B10%7D%7B1%7D%5D%3D3.75%2B1%3D4.75)
pH of buffer =4.75
No it does noot evaporate faster than sugar in water
Ok, after doing an immense amount of research I came up with the most logical answer.
A. Is indicated by a negative enthrall sign.
Reasoning: an endothermic reaction is ice melting and the energy being more than its surroundings. Not specified to ice but as an example, ice is endothermic. That puts d and b out of the running leaving you left with a and c.
When I searched up enthalpy, it said “When a substance changes at constant pressure, enthalpy tells how much heat and work was added or removed from the substance.” Which is similar to c, right? Yeah, meaning both a and c are similar in that aspect.
The reason I decided to go with a is because heat is NOT released into the surrounding, exothermic reactions release energy and heat into the surrounding.
Clorine gas was formed at the <em><u>positive</u></em><em><u> </u></em><em><u>electrode</u></em><em><u>.</u></em><em><u> </u></em>
D. Matter and energy are the same.