1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena L [17]
3 years ago
10

Can i eat air? im hungry

Physics
2 answers:
Lerok [7]3 years ago
8 0

Answer:

Yes

Explanation:

Andrew [12]3 years ago
7 0

Answer:

yes

Explanation:

You might be interested in
. (a) How high a hill can a car coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110
7nadin3 [17]

Answer:

(a) the high of a hill that car can coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h is 47.6 m

(b) thermal energy was generated by friction is 1.88 x 10^{5} J

(C) the average force of friction if the hill has a slope 2.5º above the horizontal is 373 N

Explanation:

given information:

m = 750 kg

initial velocity, v_{0} = 110 km/h = 110 x 1000/3600 = 30.6 m/s\frac{30.6^{2} }{2x9.8}

initial height, h_{0} = 22 m

slope, θ = 2.5°

(a) How high a hill can a car coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h?

according to conservation-energy

EP = EK

mgh = \frac{1}{2} mv_{0} ^{2}

gh = \frac{1}{2} v_{0} ^{2}

h = \frac{v_{0} ^{2} }{2g}

  = 47.6 m

(b) If, in actuality, a 750-kg car with an initial speed of 110 km/h is observed to coast up a hill to a height 22.0 m above its starting point, how much thermal energy was generated by friction?

thermal energy = mgΔh

                         = mg (h - h_{0})

                         = 750 x 9.8 x (47.6 - 22)

                         = 188160 Joule

                         = 1.88 x 10^{5} J

(c) What is the average force of friction if the hill has a slope 2.5º above the horizontal?

f d  = mgΔh

f = mgΔh / d,

where h = d sin θ, d = h/sinθ

therefore

f = (mgΔh) / (h/sinθ)

 = 1.88 x 10^{5}/(22/sin 2.5°)

 = 373 N

8 0
3 years ago
I HAVE 5 MINUTES!!!!!! A block oscillating on the end of a spring moves from its position of maximum spring stretch to maximum s
Verdich [7]

Therefore, if the block moves from its position of maximum spring stretch to maximum spring compression in 0.25 s, the time required for a full cycle is twice as much; T = 0.5 s.

4 0
3 years ago
Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translational speed of 6.1 m/s. Ignore f
tatiyna

Answer:

a) h=3.16 m, b)  v_{cm }^ = 6.43 m / s

Explanation:

a) For this exercise we can use the conservation of mechanical energy

Starting point. Highest on the hill

           Em₀ = U = mg h

final point. Lowest point

           Em_{f} = K

Scientific energy has two parts, one of translation of center of mass (center of the sphere) and one of stationery, the sphere

           K = ½ m v_{cm }^{2} + ½ I_{cm} w²

angular and linear speed are related

           v = w r

           w = v / r

            K = ½ m v_{cm }^{2} + ½ I_{cm} v_{cm }^{2} / r²

            Em_{f} = ½ v_{cm }^{2} (m + I_{cm} / r2)

as there are no friction losses, mechanical energy is conserved

             Em₀ = Em_{f}

             mg h = ½ v_{cm }^{2} (m + I_{cm} / r²)         (1)

             h = ½ v_{cm }^{2} / g (1 + I_{cm} / mr²)

for the moment of inertia of a basketball we can approximate it to a spherical shell

             I_{cm} = ⅔ m r²

we substitute

            h = ½ v_{cm }^{2} / g (1 + ⅔ mr² / mr²)

            h = ½ v_{cm }^{2}/g    5/3

             h = 5/6 v_{cm }^{2} / g

           

let's calculate

           h = 5/6 6.1 2 / 9.8

           h = 3.16 m

b) this part of the exercise we solve the speed of equation 1

          v_{cm }^{2} = 2m gh / (1 + I_{cm} / r²)

in this case the object is a frozen juice container, which we can simulate a solid cylinder with moment of inertia

              I_{cm} = ½ m r²

we substitute

             v_{cm } = √ [2gh / (1 + ½)]

             v_{cm } = √(4/3 gh)

let's calculate

             v_{cm } = √ (4/3 9.8 3.16)

             v_{cm }^ = 6.43 m / s

4 0
3 years ago
When a body of mass 0.25 kg is attached to a vertical massless spring, it is extended 5.0 cm from its unstretched length of 4.0
lora16 [44]

Answer:

d=0.165m

Explanation:

Given

m=0.25kg,x_{1}=5cm*\frac{1m}{100cm}=0.05m,x_{2}=4cm*\frac{1m}{100cm}=0.04m,v=2\frac{rev}{s}

The tension of the spring is

F_{k}=K*x_{1}=m*g

K=\frac{m*g}{x_{1}}

K=\frac{0.25kg*9.8m/s^2}{0.05m}=49N/m

The force in the spring is equal to centripetal force so

F_{c}=\frac{m*v^2}{r}

v=w*r=2\pi*r

But Fc is also

Fc=KxΔr

F_{c}=K*(r-x_{2})

Replacing

m*4\pi^2*r=K*(r-x_{2})

0.25kg*4\pi^2*r=49*(r-0.04m)

r=0.205m

total distance is

d=0.205-0.04=0.165m

3 0
3 years ago
When magma cools quickly, what kind of texture or
Ksivusya [100]

Answer:

a

Explanation:

when magma cools Crystal's form because the solution is super saturated with respect to some minerals if the magma cools quickly the crystals do not have much time to form hence they are small and also the resulting rock is fine grained

6 0
3 years ago
Other questions:
  • Which of the following terms describes the primary core of a comet?
    9·1 answer
  • -Gravity is affected by the:
    10·2 answers
  • What tool do you use to measure the acidity of lemon juice?
    5·1 answer
  • Which of these is the best explanation for why two negatively charged balloons, if put close, will repel?
    9·1 answer
  • What do we call the quantity of matter that an object contains?
    5·1 answer
  • If a steady magnetic field exerts a force on a moving charge, that force is directed
    13·1 answer
  • A person bounces up and down on a trampoline, while always staying in contact with it. The motion is simple harmonic motion, and
    11·1 answer
  • ANSWER ASAP AND WILL GIVE BRAINLIEST AND POINTS
    13·2 answers
  • Sound travels slowest through gases _____________________. Group of answer choices because the molecules of gas are close togeth
    10·1 answer
  • A large glass marble is added to the displacement can. 20 3 of water overflows into a beaker, and the displacement can now has a
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!