Answer:
The runner's speed at the following times would remain 8.64 m/s.
Explanation:
Acceleration definition: Acceleration is rate of change in velocity of an object with respect to time.
In this case, after 3.6 seconds the acceleration is zero, it means that the velocity of the runner after 3.6 seconds is not changing and it will remain constant for the remainder of the race. Now, we have to find the velocity of the runner that he had after 3.6 seconds and that would be the runner's speed for the remainder of the race. For this we use first equation of motion.
First equation of motion: Vf = Vi + a×t
Vf stands for final velocity
Vi stands for initial velocity
a stands for acceleration
t stands for time
In the question, it is mentioned that the runner starts from rest so its initial velocity (Vi) will be 0 m/s.
The acceleration (a) is given as 2.4 m/s²
The time (t) is given as 3.6 s
Now put the values of Vi, a and t in first equation of motion
Vf = Vi + a×t
Vf = 0 + 2.4×3.6
Vf = 2.4×3.6
Vf = 8.64 m/s
So,the runner's speed at the following times would remain 8.64 m/s.