1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
umka2103 [35]
3 years ago
5

When an atom is involved in a nuclear reaction:

Physics
1 answer:
nataly862011 [7]3 years ago
4 0
I believe the answer would be , it may change from one element to another. I’m saying this because during nuclear transmutation is when a subatomic particle fired at the nucleus of an atom changes into a heavier element , to break the nucleus apart into two nuclei and energy.
You might be interested in
If a 10. m3 volume of air (acting as an ideal gas) is at a pressure of 760 mm and a temperature of 27 degrees Celsius is taken t
kow [346]
We know, the ideal gas equation, 
P1V1 / T1 = P2V2 / T2

Here, P1 = 760 mm
V1 = 10 m3
T1 = 27 + 273 = 300 K

P2 = 400 mm Hg
T2 = -23 + 273 = 250 K

Substitute their values, 
760*10 / 300 = 400 * V2 / 250
25.33 * 250 = 400 * V2
V2 = 6333.333/ 400
V2 = 15.83

In short, Your Answer would be approx. 15.83 m3

Hope this helps!
7 0
3 years ago
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
Janelle wants to buy some strings of decorative lights for her home. She is trying to decide between two strings of lights that
inysia [295]
If she has a choice and the wiring details are stated on the packaging,
then Janelle should look for lights that are wired in parallel within the
string, and she should avoid lights that are wired in series within the string. 

If a single light in a parallel string fails, then only that one goes out. 
The rest of the lights in the string continue to shimmer and glimmer.

If a single light in a series string fails, then ALL of the lights in that string
go out, and it's a substantial engineering challenge to determine which light
actually failed.
6 0
3 years ago
Read 2 more answers
a soccer player kicks a ball. According to Newton's third law of motion, the player's foot exerts a force on the ball. The ball
Leto [7]

Answer:

The forces are exerted on different objects so they are not balanced forces.

Explanation:

8 0
3 years ago
What is the heat flux (W/m^2), due to radiation heat transfer, from a black body if the surface temperature is 1000C? The convec
12345 [234]

Answer:

55000 W/m²

Explanation:

Parameters given:

Surface temperature, T = 1000°C

Hear transfer coefficient, h = 55 W/m²C

Convection heat transfer coefficient is given as:

h = Heat flux/Temperature

Hence, Heat Flux, q, is given as:

q = h * T

q = 55 * 1000 = 55000 W/m²C

7 0
3 years ago
Read 2 more answers
Other questions:
  • How fast is a cat that runs 50 meters in 10 seconds?
    7·2 answers
  • Leyden jars function similarly to modern _____________, which store electric charge in electronic circuitry.
    13·1 answer
  • HELP ASAP PLEASE NEED HELP
    7·2 answers
  • Which liquid has a higher density; shampoo or rubing (isopropyl) alcohol?
    6·1 answer
  • A uniform 190 g rod with length 43 cm rotates in a horizontal plane about a fixed, vertical, frictionless pin through its center
    10·1 answer
  • Saturn has a radius of about 9.0 earth radii, and a mass 95 times the Earth’s mass. Estimate the gravitational field on the surf
    5·1 answer
  • You ride your bike for a distance of 30 km. You travel at a speed of 0.75 km/ minute. How many minutes does this take?
    10·2 answers
  • What is kinetic energy of a 7.26kg bowling ball that is rolling at a speed of 2m/s?
    5·1 answer
  • Read this excerpt from Through the Looking-Glass by Lewis Carroll.
    14·2 answers
  • (Cr(NH3).](Co(CN)6) is a coordination complex
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!