Answer:
b. a chair on a floor
Explanation:
All of the other objects are in motion, the jet is flying so it is not at rest, the rabbit is also moving, and a ball hit by a bat is also in motion
Answer:
I dont have any context, but my best guess is it will be all of the above.
Answer:
9.773m/s2
Explanation:
Given,
h=8848m
The value of sea level is 9.08m/s2
So,
Let g′ be the acceleration due to the gravity on the Mount Everest.
g′=g(1−h2h)
=9.8(1−640000017696)
=9.8(1−0.00276)
9.8×0.99724
=9.773m/s2
Thus, the acceleration due to gravity on the top of Mount Everest is =9.773m/s2
Hope it helped!!!
Answer:
The velocity of the truck after the collision is 20.93 m/s
Explanation:
It is given that,
Mass of car, m₁ = 1200 kg
Initial velocity of the car, 
Mass of truck, m₂ = 9000 kg
Initial velocity of the truck, 
After the collision, velocity of the car, 
Let
is the velocity of the truck immediately after the collision. The momentum of the system remains conversed.




So, the velocity of the truck after the collision is 20.93 m/s. Hence, this is the required solution.