Answer:
T
Explanation:
= magnitude of current in each wire = 2.0 A
= length of the side of the square = 4 cm = 0.04 m
= length of the diagonal of the square =
a =
(0.04) = 0.057 m
= magnitude of magnetic field by wires at A and C


T
= magnitude of magnetic field by wire at B


T
Net magnitude of the magnetic field at D is given as



T
Answer: <span>D. A bimetallic strip bends so that the steel is on the outside curve
</span>
When something has an increased temperature, its volume will expand. Then, if the temperature drops, its volume should be smaller. From there option A and B are out since the liquid in thermometer is expand or move up.
When you put two kinds of different metal with a different coefficient of thermal expansion, the outer curve metal will be the one with lesser coefficient when temperature drop. Since the question about drop in temperature then the metal should be bend
Brass will expand 1.5 times more than the steel so the outer curve would be the steel.
Answer:
Tension T1 is less than tension T2.
T1 < T2
Explanation:
According to given data,
mass of box A ( mA) is grater than mass of box B (mB)
we can write,
m(A) > m(B)
Newton's second law states that:
Tension of object is directly proportional to the mass of the system.
T ∝ m
here Boxes A and B are being pulled to the right on a frictionless surface,
so Tension T1 generates due to the mass of box A m(A)
and Tension T2 arises due to mass of the system m(A) + m(B)
Thus tension T1 will be less than tension T2
T1 < T2
learn more about Tension force here:
<u>brainly.com/question/13175014</u>
<u />
#SPJ4
Answer:
Negative electric charges