Drag is passive, therefore it does not act on gravity. Drag is a mechanical resistance to motion. If the motion in question was induced by gravity drag it can impede that motion, but has no effect on the gravity.
hope this helps!
Answer:
a) time t1 = 2.14s
b) initial angular speed w1 = 6 rad/s
Explanation:
Given that;
Initial Angular velocity = w1
Angular distance = s = 65 rad
time = t = 5 s
Angular acceleration a = 2.80 rad/s^2
Using the equation of motion;
s = w1t + (at^2)/2
w1 = (s-0.5(at^2))/t
Substituting the values;
w1 = (65 - (0.5×2.8×5^2))/5
w1 = 6rad/s
Time to reach w1 from rest;
w1 = at1
t1 = w1/a = 6/2.8 = 2.14s
a) time t1 = 2.14s
b) initial angular speed w1 = 6 rad/s
Answer:
Acceleration due to gravity will be 
Explanation:
We have given length of pendulum l = 55 cm = 0.55 m
It is given that pendulum completed 100 swings in 145 sec
So time taken by pendulum for 1 swing 
We have to find the acceleration due to gravity at that point
We know that time period of pendulum;um is given by

So 

Squaring both side


So acceleration due to gravity will be 
Newton’s 2nd law states that Force is equal to
the product of mass (m) and acceleration (a):
F = m a --->
1
While in magnetic forces, force can also be expressed as:
F = q v B --->
2
where,
q = total charge
v = velocity = 45 cm / s = 0.45 m / s
B = the magnetic field = 85 T
First we solve for the total charge, q:
q = 3.8 × 10^-23 g (1 mol / 23 g) (6.022 × 10^23 electrons / mol) (1.602 ×
10^-19 C / electron)
q = 1.594 × 10^-19 C
We equate equations 1 and 2 then solve for acceleration a:
m a = q v B
a = q v B / m
a = [1.594 × 10^-19 C * 0.45 m / s * 85 T] / 3.8 × 10-26 kg
a = 160,437,862.2 m/s^2
Therefore the maximum acceleration of Na ions is about 160 × 10^6 m/s^2.