The answer to this question would be: 0.375 cups of milk
In this question, you are asked how many cups of milk is 3/4 serving from 1/2 cup of milk. To answer this, you need to multiply the number of serving with the serving size.<span>
</span>If one serving is 1/2 cups of milk, then 3/4 servings would be:
3/4 servings * (0.5 cups / serving)= 3/8 cups of milk = 0.375 cups of milk
Answer:
(a)
(b)
Step-by-step explanation:
(a) For using Cramer's rule you need to find matrix
and the matrix
for each variable. The matrix
is formed with the coefficients of the variables in the system. The first step is to accommodate the equations, one under the other, to get
more easily.

![\therefore A=\left[\begin{array}{cc}2&5\\1&4\end{array}\right]](https://tex.z-dn.net/?f=%5Ctherefore%20A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%265%5C%5C1%264%5Cend%7Barray%7D%5Cright%5D)
To get
, replace in the matrix A the 1st column with the results of the equations:
![B_1=\left[\begin{array}{cc}1&5\\2&4\end{array}\right]](https://tex.z-dn.net/?f=B_1%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%265%5C%5C2%264%5Cend%7Barray%7D%5Cright%5D)
To get
, replace in the matrix A the 2nd column with the results of the equations:
![B_2=\left[\begin{array}{cc}2&1\\1&2\end{array}\right]](https://tex.z-dn.net/?f=B_2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%261%5C%5C1%262%5Cend%7Barray%7D%5Cright%5D)
Apply the rule to solve
:

In the case of B2, the determinant is going to be zero. Instead of using the rule, substitute the values of the variable
in one of the equations and solve for
:

(b) In this system, follow the same steps,ust remember
is formed by replacing the 3rd column of A with the results of the equations:

![\therefore A=\left[\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right]](https://tex.z-dn.net/?f=%5Ctherefore%20A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%261%260%5C%5C1%262%261%5C%5C0%261%262%5Cend%7Barray%7D%5Cright%5D)
![B_1=\left[\begin{array}{ccc}1&1&0\\0&2&1\\0&1&2\end{array}\right]](https://tex.z-dn.net/?f=B_1%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%260%5C%5C0%262%261%5C%5C0%261%262%5Cend%7Barray%7D%5Cright%5D)
![B_2=\left[\begin{array}{ccc}2&1&0\\1&0&1\\0&0&2\end{array}\right]](https://tex.z-dn.net/?f=B_2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%261%260%5C%5C1%260%261%5C%5C0%260%262%5Cend%7Barray%7D%5Cright%5D)
![B_3=\left[\begin{array}{ccc}2&1&1\\1&2&0\\0&1&0\end{array}\right]](https://tex.z-dn.net/?f=B_3%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%261%261%5C%5C1%262%260%5C%5C0%261%260%5Cend%7Barray%7D%5Cright%5D)



Answer:
1. When we reflect the shape I along X axis it will take the shape I in first quadrant, and then if we rotate the shape I by 90° clockwise, it will take the shape again in second quadrant . So we are not getting shape II. This Option is Incorrect.
2. Second Option is correct , because by reflecting the shape I across X axis and then by 90° counterclockwise rotation will take the Shape I in second quadrant ,where we are getting shape II.
3. a reflection of shape I across the y-axis followed by a 90° counterclockwise rotation about the origin takes the shape I in fourth Quadrant. →→ Incorrect option.
4. This option is correct, because after reflecting the shape through Y axis ,and then rotating the shape through an angle of 90° in clockwise direction takes it in second quadrant.
5. A reflection of shape I across the x-axis followed by a 180° rotation about the origin takes the shape I in third quadrant.→→Incorrect option
Answer:
9
Step-by-step explanation:
The factors of 18 are : 1, 2, 3, 6, 9, 18
The factors of 27 are : 1, 3, 9, 27
The common factors are : 1, 3, 9
The gcf is 9