<h3>
<u>moles of H2SO4</u></h3>
Avogadro's number (6.022 × 1023) is defined as the number of atoms, molecules, or "units of anything" that are in a mole of that thing. So to find the number of moles in 3.4 x 1023 molecules of H2SO4, divide by 6.022 × 1023 molecules/mole and you get 0.5646 moles but there are only 2 sig figs in the given so we need to round to 2 sig figs. There are 0.56 moles in 3.4 x 1023 molecules of H2SO4
Note the way this works is to make sure the units are going to give us moles. To check, we do division of the units just like we were dividing two fractions:
(molecules of H2SO4) = (molecules of H2SO4)/1 and so we have 3.4 x 1023/6.022 × 1023 [(molecules of H2SO4)/1]/[(molecules of H2SO4)/(moles of H2SO4)]. Now, invert the denominator and multiply:
<h3 />
Answer:
Microscopes and telescopes often use two lenses to make an image large enough to see. A compound microscope uses two lenses to achieve high magnification. Both lenses are convex, or converging. Light from the object first passes through the objective lens.
Explanation:
A compound microscope uses two lenses to achieve high magnification
Answer:
8.33 atm
Explanation:
Xe is 5 out of (4+5) or 5 / 9 ths of the gas present
5/9 * 15 atm = 8.33 atm
Answer:
315mL
Explanation:
Data obtained from the question include the following:
Molarity of stock solution (M1) = 0.135 M
Volume of stock solution needed (V1) =?
Molarity of diluted solution (M2) = 0.0851 M
Volume of diluted solution (V2) = 500mL
The volume of the stock solution needed can be obtain as follow:
M1V1 = M2V2
0.135 x V1 = 0.0851 x 500
Divide both side by 0.135
V1 = (0.0851 x 500) / 0.135
V1 = 315mL
Therefore, the volume of the stock solution needed is 315mL