Answer: A. The reaction takes place in one step.
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
Molecularity of the reaction is defined as the number of atoms, ions or molecules that must colloid with one another simultaneously so as to result into a chemical reaction.
Order of the reaction is defined as the sum of the concentration of terms on which the rate of the reaction actually depends. It is the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions are defined as the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical reaction.

k= rate constant
a= order with respect to A
b = order with respect to B
Answer- the estimated number is 4 moles but it actually is 3.86 moles
Explanation
hi i hope your days been amazing and know that your loved⋆ ˚。⋆୨୧˚ ˚୨୧⋆。˚ ⋆
<33
the formation of cations by using electron dot structures are :
a) Al
.
Al . losing the three valence electrons makes the Al³⁺
.
b) Sr :
Sr : losing the two valence electrons makes Sr²⁺
c) Ba
: Ba , losing the two valence electrons makes it Ba²⁺
A Lewis electron dot diagram is a representation of the valence electrons of an atom that employments specks around the image of the element. The number of dots equals the number of valence electrons within the molecule. These dots are arranged to the right and left and over and underneath the symbol, with no more than two dots on a side. Cations are the positive ions shaped by the loss of one or more electrons. The foremost commonly shaped cations of the representative elements are those that include the loss of all of the valence electrons.
To know more about the lewis electron dot diagram refer to the link brainly.com/question/14191114?referrer=searchResults.
#SPJ9
Answer:
[O2(g)][SO2(g)]^2/[SO3(g)]^2
The law is approximately valid for real gases at sufficiently low pressures and high temperatures. The specific number of molecules in one gram-mole of a substance, defined as the molecular weight in grams, is 6.02214076 × 1023, a quantity called Avogadro's number, or the Avogadro constant.