The missing question is:
<em>What is the percent efficiency of the laser in converting electrical power to light?</em>
The percent efficiency of the laser that consumes 130.0 Watt of electrical power and produces a stream of 2.67 × 10¹⁹ 1017 nm photons per second, is 1.34%.
A particular laser consumes 130.0 Watt (P) of electrical power. The energy input (Ei) in 1 second (t) is:

The laser produced photons with a wavelength (λ) of 1017 nm. We can calculate the energy (E) of each photon using the Planck-Einstein's relation.

where,

The energy of 1 photon is 6.52 × 10⁻²⁰ J. The energy of 2.67 × 10¹⁹ photons (Energy output = Eo) is:

The percent efficiency of the laser is the ratio of the energy output to the energy input, times 100.

The percent efficiency of the laser that consumes 130.0 Watt of electrical power and produces a stream of 2.67 × 10¹⁹ 1017 nm photons per second, is 1.34%.
You can learn more about lasers here: brainly.com/question/4869798
15.63 mol. You need 15.63 mol HgO to produce 250.0 g O_2.
<em>Step 1</em>. Convert <em>grams of O_2 to moles of O_2</em>
Moles of O_2 = 250.0 g O_2 × (1 mol O_2/32.00 g O_2) = 7.8125 mol O_2
<em>Step 2</em>. Use the molar ratio of HgO:O_2 to convert <em>moles of O_2 to moles of HgO
</em>
Moles of HgO = 0.8885 mol O_2 × (2 mol HgO/1 mol O_2) = <em>15.63 mol HgO</em>
We should use renewable resources wisely because <u>if we over use them the resources we already have will decline.</u>
Answer:
See below
Explanation:
<u> Name </u> <u>Formula </u> <u> Major species </u> <u> </u>
Zinc iodide ZnI₂ H₂O(ℓ), I⁻(aq), Zn²⁺(aq),
Nitrogen(I) oxide N₂O H₂O(ℓ), N₂O(aq)
Sodium nitrite NaNO₂ H₂O(ℓ), Na⁺(aq), NO₂⁻(aq)
Glucose C₆H₁₂O₆ H₂O(ℓ), C₆H₁₂O₆(aq)
Nickel(II) iodide NiI₂ H₂O(ℓ), I⁻(aq), Ni²⁺(aq)
- Glucose and nitrogen(I) oxide are covalent compounds. They do not dissociate in solution.
- The compounds containing metals are ionic. They produce ions in solution.
- ZnI₂ and NiI₂ produce twice as many iodide ions as metal ions.
It is two or more objects and different things that can be removed from each other.